
Multi-Armed SPHINCS+

Gustavo Banegas and Florian Caullery

Qualcomm France SARL, Valbonne, France
{gsouzaba,fcauller}@qti.qualcomm.com

Abstract. Hash-based signatures are a type of Digital Signature Algo-
rithms that are positioned as one of the most solid quantum-resistant
constructions. As an example SPHINCS+, has been selected as a stan-
dard during the NIST Post-Quantum Cryptography competition. How-
ever, hash-based signatures suffer from two main drawbacks: signature
size and slow signing process. In this work, we give a solution to the lat-
ter when it is used in a mobile device. We take advantage of the fact that
hash-based signatures are highly parallelizable. More precisely, we pro-
vide an implementation of SPHINCS+ on the Snapdragon� 865 Mobile
Platform taking advantage of its eight CPUs and their vector exten-
sions. Our implementation shows that it is possible to have a speed-up
of 15 times when compared to a purely sequential and non-vectorized
implementation. Furthermore, we evaluate the performance impact of
side-channel protection using vector extensions in the SPHINCS+ ver-
sion based on SHAKE.

Keywords: SPHINCS+
· Post-Quantum Cryptography · Digital Signa-

ture Algorithms · Hash-based Signatures.

1 Introduction

With the last development in the standardization of Post-Quantum Cryptogra-
phy (PQC) schemes, the migration to these new algorithms has become more
and more urgent. However, the constraints for this transition depend highly on
the deployment environments and will dictate the choice of algorithms among
the standardized options. It is thus important to know about the performance
of every scheme on specific targets. Among the standardized algorithms, sig-
natures schemes based on hash functions are standing out by their strong and
well-studied security assumptions.

From an historical view, hash-based signatures started with the seminal work
of Lamport on One Time Signature (OTS) [17]. Building on Lamport’s OTS
scheme, Winternitz [14] and Merkle [20] proposed schemes that could sign more
than one bit efficiently. Being built on symmetric primitives (hash functions)
these schemes are inherently resistant to quantum attacks as long as the un-
derlying primitive is also secure. Some of the most recent hash-based signatures

∗ Author list in alphabetical order; see https://www.ams.org/profession/leaders/

CultureStatement04.pdf. Date of this document: 2023-05-04.

https://www.ams.org/profession/leaders/CultureStatement04.pdf
https://www.ams.org/profession/leaders/CultureStatement04.pdf

2 Gustavo Banegas, Florian Caullery

are eXtended Merkle Signature Scheme (XMSS) [9] and its Multi-Trees vari-
ant XMSSMT [15], as well as Leighton-Micali Signature (LMS) [19]. These three
schemes are now part of the RFC 8708 [11], and the NIST SP 800-208 [22]. At
a high level, LMS and XMSS are built over One Time Signatures and therefore
suffer from a security loss if they sign two different messages with the same key
material. Hence, one needs to keep track of the signatures already issued making
these schemes stateful.

Unfortunately, this approach might not be realistic for several use-cases. On
top of that, the NIST Post-Quantum Cryptography standardization process [21]
did not allow for stateful candidates. To overcome these problems, Bernstein et
al. proposed a tweak on XMSS in [5], and developed a scheme called SPHINCS
relying on Few Times Signature (FTS) instead of OTS schemes and some amount
of randomization to make it stateless. Its variant SPHINCS+ [5, 7] has been
chosen to be a standard in the NIST process. We remark that despite some
small degradation in its security claim [23], SPHINCS+ continues to be secure.

When one makes a comparison of the finalists in the NIST process, SPHINCS+

presents the longest signatures of the three standardized schemes, the two others
being Falcon [12] and Dilithium [3]. Also, the latency for a signature generation
is considerably higher. To illustrate the difference, we can use the data from
SUPERCOP1. On an Intel® i5, SPHINCS+ signature is 11 times slower than
Falcon and 60 times slower than Dilithium. It thus becomes important to tackle
the performance issue and implement SPHINCS+ taking advantage of modern
environments.

Contributions. We concern ourselves with the scenario of implementing SPHINCS+

on mobile phones with high-performance System on Chips (SoC). These devices
can be tasked with signing a message with stringent time constraints. On the
other hand, they often have multiple cores available for parallelism. More specif-
ically, we are exploring strategies to accelerate SPHINCS+ on a Snapdragon®

865 that supports four ARM® Cortex-A77 and four Cortex-A55. Our imple-
mentation techniques allow us to speed-up the optimized implementation based
on SHA-256 proposed in the SPHINCS+ submission package by a factor of 15.
We chose to illustrate our approach SPHINCS+ since it uses XMSSMTas a ba-
sic structure and our results could easily be extended to the original XMSSMT.
Moreover, we present details when one uses a side-channel protected version of
SHAKE in SPHINCS+. Note that we only discuss the signature procedure in
our paper as the verification procedures is a simple hash chain and is on par
with other algorithms performance-wise.

Organization of paper. In Section 2 we succinctly introduce SPHINCS+. Sec-
tion 3 presents our test platform. We then describe the optimization that we
apply using Single Instruction Multiple Data (SIMD) in Section 4 and those
using multithreading strategies in Section 5.

1 https://bench.cr.yp.to/results-sign.html

https://bench.cr.yp.to/results-sign.html

Multi-Armed SPHINCS+ 3

2 SPHINCS+

SPHINCS+ was announced to be standardized in the ongoing process from NIST
on Post-Quantum Cryptography. As mentioned earlier, its security relies on the
symmetric primitive that it uses, in this case, a hash function, meaning that, as
long as this hash function is quantum-safe, SPHINCS+ is safe too. Its construc-
tion depends on three main blocks:

– A FTS scheme called Forest Of Random Subset (FORS),

– A OTS scheme named Winternitz One time Signature + (WOTS+),

– A variant of the Merkle tree Signature scheme eXtended Merkle Signature
Scheme (XMSS) called XMSSMT(MT stands for Multi-Tree).

Note that those subcomponents only support one or a limited number of
signatures. This is circumvented by the instantiation parameters that allow vir-
tually an infinite number of signatures. On top of that, the signature material
that will be used is selected by deriving a pseudo-random index from a public
seed, and the message. This makes unlikely the reuse an OTS. We now give a
short description of the subcomponents.

2.1 FORS

The FORS is a FTS scheme, and in the words of [5]: “an improvement of
HORST [6] which in turn is a variant of HORS [24]”. FORS starts by select-
ing a hash-function that outputs a n-bytes hash, a parameter value t > 1 that
is a power of 2, and a parameter k. The secret key is composed of kt random
strings of n bytes each. A FORS tree is a Merkle tree whose t leaves are secret
key values. The roots of all the k trees are then hashed all together to compose
the public key of FORS. To sign the message M , the signature process is the
following:

1. Hash m, and the hash is split into k parts;

2. each part is interpreted as an integer in 0, . . . , t− 1;

3. use each of those integers gives to get the index of the leaf to use in the
corresponding FORS tree;

4. the leaf and the nodes of the tree are necessary to rebuild the tree root (i.e.
the authentication path), and it is used as the signature of the corresponding
part;

5. the full signature is the concatenation of all the signatures of the different
parts.

Figure 1 illustrates a FORS structure. The verification process is simply the
hash sequence necessary to obtain the top root, and the comparison with the
public key.

4 Gustavo Banegas, Florian Caullery

Fig. 1. FORS signature explained. The red nodes are the secret key parts, the green
node is the public key, the blue nodes are the part of the signature. The blue nodes
written ots are part of the One Time Signature while others are part of the Authen-
tication path. Blue and red nodes are part of both the signature and the private key,
the empty nodes are being reconstructed during the verification.

2.2 Winternitz One Time Signature+

The other subcomponent used by SPHINCS+ is the OTS introduced by Hülsing
in [14] called Winternitz One Time Signature (WOTS+). WOTS+ starts by
selecting a hash-function that outputs a n-bytes hash, a parameter value w > 1
that is a power of 2 and an extra parameter l2 that represents the checksum
length. The private key is composed of l1(:= 8 ∗ n/ log2(w)) + l2 blocks of n-
bytes. The public key is composed of all the private key blocks hashed w times.
After hashing the message M , a WOTS+ signature is obtained as follow:

1. It splits the hash into l1 parts;

2. each part is interpreted as an integer bi in 0, . . . , w − 1;

3. hash the i-th private key block bi times;

4. compute a checksum with as the sum of all the w − bi and express that
number in l2 integers in 0, . . . , w − 1;

5. hash the l2 remaining private key a number of times given by the checksum
integers;

6. the signature consists of all the obtained hashes.

The verification procedure is simply the completion of the hash chains and
comparisons with the public key blocks.

Multi-Armed SPHINCS+ 5

2.3 XMSSMT

The last building block is a hyper tree scheme called XMSSMT. To understand
the scheme, one needs to notice that it is possible to use an unbalanced Merkle
tree to hash the public key of WOTS+ into a single block. Then, by placing 2a

WOTS+ public keys as the leaves of the Merkle tree, one can compress those 2a

keys into one, that describes XMSS. XMSSMT is built over XMSS by placing an
XMSS tree over 2a XMSS trees, so that each leaf of the top tree will sign the
public key of the tree below. One can repeat this process iteratively to obtain
d layers of trees. This allows for a faster public key generation when compared
to a XMSS tree of height da, as only the public key of the top tree has to
be computed. The signature of XMSSMT is the concatenation of the WOTS+
signatures of the XMSS trees root, and the nodes necessary to reconstruct the
public key (i.e. the authentication path).

Figure 2 displays the structure of XMSSMT. The verification is simply the
hash sequence necessary to obtain the top root, and a comparison with the public
key.

2.4 SPHINCS+

Finally, after all the previous subcomponents, we can describe SPHINCS+.
SPHINCS+ is simply an instance of XMSSMT where the bottom leaves are
FORS signatures instead of WOTS+ signatures. The index of the bottom leaf
is pseudo-randomly generated from the message and the public key. SPHINCS+

has different parameters, we simplify them as:

– n : the security parameter in bytes.
– w : the Winternitz parameter.
– a : the height of the XMSS trees.
– d : the number of layers in the hypertree.
– h : the height of the hypertree being equal to da.
– k : the number of trees in FORS.
– t : the number of leaves of a FORS tree.

Table 1 gives the concrete parameters, we acquire them from the reference doc-
umentation [5].

Note that the security claims of the authors of SPHINCS+ and do not in-
tegrate the latest cryptanalysis results of [23]. The parameters will certainly
evolve according to these attacks, and we will update our implementations when
an official change will be made.

3 Our test platform: Snapdragon 865

In our tests, we use a Snapdragon® 865. The 865 is an octa core processor, and
in its composition it has four ARM® processors Cortex-A77, and four Cortex-
A55. Qualcomm® uses different speeds in the processors. Also, they define one

6 Gustavo Banegas, Florian Caullery

Fig. 2. XMSSMTsignature explained. The red nodes are the secret key parts, the green
node is the public key, the blue nodes are the part of the signature, the empty nodes
are being reconstructed during the verification.

Multi-Armed SPHINCS+ 7

Table 1. Parameters of SPHINCS+.

Parameters n h d log(t) k w bit security NIST sec. lvl. signature (B)

SPHINCS+-128s 16 63 7 12 14 16 133 1 7, 856
SPHINCS+-128f 16 66 22 6 33 16 128 1 17, 088
SPHINCS+-192s 24 63 7 14 17 16 193 3 16, 224
SPHINCS+-192f 24 66 22 8 33 16 194 3 35, 664
SPHINCS+-256s 32 64 8 14 22 16 255 5 29, 792
SPHINCS+-256f 32 68 17 9 35 16 255 5 49, 856

Cortex-A77 as Gold tier running at 2.8GHz, three at Silver tier running at
2.4GHz, and the four Cortex-A55 running at 1.8GHz with the DynamIQ ARM®

technology.
In our setup, the Snapdragon® 865 is embedded in a smart phone Samsung

S20 FE 5G running Android 11. The architecture of the processors is ARM-v8a
and all of them have NEON vector coprocessors that operates on 128 bits vectors.
The NEON coprocessors have dedicated cryptographic instructions which can
accelerate symmetric primitives like AES and SHA-256 but not SHA3.

To compile our code, we are using Clang 14.0.6 with “-Ofast” flag that auto-
vectorizes the code and our multithreading is done via posic thread (pthread).
We are running our compiled code directly on the target via the Android Debug
Bridge (ADB) tool, and without an intermediate application. All our results are
averaged over 1, 000 runs.

We make sure that our code is running on a certain core via the C function
sched setaffinity. Note that the Android OS allows to use the three Cortex-
A77 at Silver tier, and the four Cortex-A55 but not the Cortex-A77 at Gold tier.
This means that we can effectively use 7 out of 8 cores in our experiments.

4 SIMD improvements on our test platforms

Prior to any optimization work, the first thing to do is to profile the reference
implementation. Our analysis shows that the hash computation represents 99.6%
of the time spent in SPHINCS+. The natural step from this analysis is to find
strategies to accelerate the underlying hash functions.

4.1 Using SIMD to speed-up SPHINCS+

The reference implementation of SPHINCS+ uses the tree hash algorithm given
by [10]. The algorithm in [10] is the most optimal currently available in the
literature. For the optimized implementations, two strategies are given; The first
one applies to the SPHINCS+ variant using Haraka, and it uses the AES-New
Instructions (AES-NI) available on both modern Intel processors and ARM-
Neon to speed-up single node computations. The speed-up obtained is directly

8 Gustavo Banegas, Florian Caullery

depending on the ratio between the AES-NI and the pure software AES. The
second strategy uses the fact that vector instructions can be used to compute
independent hashes in parallel. For example, on ARM-Neon, as Keccak operates
on lanes of 64 bits and each vector of ARM-Neon is 128 bits, one can store
two independent Keccak states on 25 vectors, and then compute the result of
the permutation over the two states at once. When one uses this strategy, it
results in a speed-up of roughly a factor of 2. The only drawback is that one
hash computation is wasted during the computation of the tree root but that
is marginal. The AVX2 optimized implementation of SPHINCS+ with SHA-256
uses the second strategy. However, it computes 8 independent hashes in parallel
since AVX2 vectors can go up to 256 bits, and SHA-256 operates on 32 bits
words. These strategies were first mentioned in [16].

Contrary to Intel AVX2, ARM-Neon offers native instructions to speed-up
the computation of SHA-256. One natural question is which strategy is better?
Should we use native instructions or take advantage of vectorization to compute
several (4 in that case) instances of SHA-256 in parallel. To answer this question,
we implement both options and compare them. Our benchmark shows that the
throughput of the SHA-256 instructions is around 5 times higher on Cortex-A77
and Cortex-A55 than computing 4 SHA-256 in parallel with Neon instructions.
The results are given in Table 2. Hence, we use the native SHA-256 instructions
instead of the 4 parallel computations. This fact was already pointed out in [16]
for Cortex-A72 and Cortex-A5 and we confirm that those results extrapolate
to more recent ARM processors. We also added the comparison with Haraka
which is an AES-based hash function specific to SPHINCS+. We implemented
it in the way advised in the ARM Software Optimization Guides for Cortex A77
and A55 [1, 2] to take advantage of the pipelining and the instruction fusion.
However, Haraka remains slower than SHA-256 on Neon.

Table 3 shows the comparison between our implementation using Neon in-
structions and the other strategies. For simplicity, we use SPHINCS+ with differ-
ent primitives but all are the implementations uses security parameter 128f. To
differentiate our implementations from the reference package, we present them
in italic. It is clear that the SHA-256 variant based on our implementation of
SHA-256 with Neon intrinsics is the fastest on our test platform. In the rest of
the work, we will use this implementation as a benchmark as any speed-up on it
can only translate to equivalent or more important speed-up on slower parame-
ters. We show also for the sake of comparison the performance of Dilithium-90s
version (e.g. replacing calls to SHA3 by AES) for a security level 2. We use the
implementation of [4] using the AES Neon instructions.

4.2 Using SIMD to mitigate side-channel attacks

Some use-cases might require protection against side-channel attacks. Recent
works show that vector cryptographic instruction might not offer a satisfying
level of protection, see for example [13,18]. Hence, we propose to target SHAKE
and implement the software countermeasures described in [8] to raise the level

Multi-Armed SPHINCS+ 9

Table 2. Performance comparison on a single core in op/s (higher operations per
second is better).

Primitive Cortex-A55 Cortex-A77

SHA-256-Neon (ours) 3, 955, 226 9, 486, 676

SHA-256x4 688, 912 2, 145, 526

Haraka Neon 2, 589, 348 9, 047, 010

Table 3. Performance comparison on a single core in op/s (higher operations per
second is better). The parameters set chosen is SPHINCS+-128f.

Primitive Cortex-A55 Cortex-A77

SPHINCS+ SHA-256 Neon sign (ours) 19 42

SPHINCS+ Haraka Neon sign 12 35

SPHINCS+ SHAKE256 Neon sign 3 8.6

Dilithium2-90s sign 2, 548 4, 624

of protection against side-channel attacks.

We recall that Keccak, the underlying permutation of SHAKE, is defined
by two operations repeated for 24 rounds over a state of 1600 bits: λ and χ, λ
being a purely linear layer and χ being the non-linear part. The countermeasure
proposed in [8] is using two or three shares, that is, every value x of the state is
decomposed into two or three values a and b, possibly c, such that x = a⊕ b or
x = a ⊕ b ⊕ c. The linear layer λ is kept and applied on the two shares of each
value as it is linear (i.e. we have λ(x) = λ(a)⊕λ(b)(⊕λ(c))). The non-linear layer
χ requires more work. The operation χ is defined by xi ← xi⊕ ((xi+1+1).xi+2)
where the indexes are computed in a specific way. Keccak is usually implemented
in a bitsliced manner, meaning that χ will be actually performed with operands
of 64 bits (we refer the reader to [8] for a full description of Keccak and its
implementation). The two-shared computation of χ is done using the following
formula:

ai ← ai ⊕ ((ai+1 + 1).ai+2) + ai+1bi+2

bi ← bi ⊕ ((bi+1 + 1).bi+2) + bi+1ai+2.

The authors of this countermeasure then remark that the formulas can be
simplified by

ai ← ai ⊕ ((ai+1 + 1).ai+2) + ai+1bi+2 ⊕ (¯bi+1.bi+2) + bi+1ai+2

bi ← bi,

10 Gustavo Banegas, Florian Caullery

and that we can pre-compute a fixed mask b such that b⊕λ(b) has a minimal
Hamming weight. We argue that such optimization defeats the purpose of mask-
ing as a fixed mask satisfying this condition has a vast majority of its bits fixed
to 0 and we would be back to perform the operations on an unmasked value. For
this reason, we implement the countermeasure without the simplification.

To use make the most out of vector instructions, we put a masked 64bits
value into the first part of a Neon vector and its mask in the second part. That
is done as presented in Listing 1.1 for a value x.

Listing 1.1. masking in Neon intrinsic

uint64_t x;

uint64_t b = rand_64 ();

uint64x2_t masked_vector = {x ^ b, b};

Performing the χ operation is then a simple matter of programming with
Neon intrinsics and can be done, for example, as presented in Listing 1.2.

Listing 1.2. χ in Neon intrinsic

uint64x2_t v0 = {a0, b0};

uint64x2_t v1 = {a1, b1};

uint64x2_t v2 = {a2, b2};

uint64x2_t result = vnegq_s32(v1);

// Negates v1

result = vandq_u64(result , v2);

// result = result AND v2

// result = {(a1 + 1).a2 , (b1 + 1).b2}

v2 = vextq_u64(v2 , v2 , 1);

// swap v2 -> v2 = {b2 , a2}

v2 = vandq_u64(v2 , v1);

// v2 = {a1.b2 , b1.a2}

result = veor3q_u64(result , v2 , v0);

//XOR 3 ways

return result;

We implemented the whole Keccak permutation using this technique and
measured the impact on the performance. The results are presented in Table 4.
Note that we are comparing to the reference implementation in the SPHINCS+

package that performs 2 Keccak permutation in parallel. Our result shows that
the permutation itself suffers a slow-down of around 60% without including the
random generation of the mask. If we include the generation of the mask, we
are observing that the permutation is now more than 10 times slower. This

Multi-Armed SPHINCS+ 11

would translate into a signature time 10 times slower as well. Considering that
SPHINCS+ with SHAKE is already performing less than 10 signatures per sec-
ond, we deem this countermeasure as not realistic in an real-world context, unless
paired with the multithreading strategy depicted in Section 5.

Table 4. Performance comparison on a single core in op/s (higher operations per
second is better). The parameter for SPHINCS+ is 128f.

Primitive Cortex-A55 Cortex-A77

SHAKEx2 (ref. impl.) 377, 786 1, 060, 445

Masked SHAKE w/o random mask generation 117, 233 391, 236

Masked SHAKE with random mask generation 22, 099 82, 911

5 Parallelization strategies

On a mobile platform, some applications can consider more important to sign
a single message than have a higher throughput. In this context, we present a
trade-off between fast signing a message and throughput. To speed-up signing in
mobile devices, we propose to use multithreading on SPHINCS+. It is important
to remark that SPHINCS+ is highly parallelizable. This is possible because the
secret key used in the subtrees are solely depending on the master secret key
seed and the indexes that are derived from the message. This remark is also valid
for FORS and XMSSMT.

5.1 When Multithreading goes wrong

One of the ways to parallelize computations in SPHINCS+ is to parallelize a
single tree hash. For this, one assigns the computation of the nodes to different
threads and wait to join the results in a top thread that would compute the
root. This strategy might be valid in other contexts, but the subtrees height we
are dealing with is at maximum 14 for FORS, and 8 for XMSSMT. Creating a
thread to perform at best 213 hash operations is not a positive trade-off as we
show in Table 5. The timing for creating an empty thread is already longer than
performing a single tree hash on both Cortex-A55 and Cortex-A77.

5.2 Multithreading on FORS

FORS is based on the computation of multiple independent subtrees root, and
a final hash of all these roots concatenated. We assign a certain number of trees
to each of the threads. As expected, we found out that the speed-up is directly

12 Gustavo Banegas, Florian Caullery

Table 5. Thread creation versus SHA-256 in op/s.

Cortex-A55 Cortex-A77

SHA-256-Neon 3, 955, 226 9, 486, 676

Thread creation 3, 803 6, 730

linked to the number of cores that can be mobilized. The first conclusion here
is that the time used to create the threads is low enough when compared to the
tree hashing operations in each thread. To measure this difference, we pushed
the number of threads to the number of FORS trees (we assigned one thread
per tree hash). We illustrate our results for the fastest variant 128f-simple with
SHA-256 intrinsics in Figure 3 2. The second conclusion is that FORS on four
Cortex-A55 is as fast as on a single Cortex-A77, this makes one Cortex-A77 a
more attractive choice than a distribution of computations on the smaller cores.

Fig. 3. Performance of multithreaded FORS 128f-simple with SHA-256 intrinsics. The
abscissa is the number of threads an the ordinate is the number of FORS signatures
generated per second. The right graphic is for Cortex-A77 and the left one for Cortex-
A55.

5.3 Multithreading on XMSSMT

Multithreading for XMSSMT requires a bit more care than FORS as each roots
of a subtree needs to be signed by the tree above. That means that, naively,
a thread should wait for the computation of the top root of another thread

2 We are only showing our improvements on the fastest parameter sets as the ra-
tio thread creation time over thread execution time is the least favorable for our
experiment. The improvements for slower parameter set will only be better

Multi-Armed SPHINCS+ 13

to be able to start, rendering multithreading effectively useless. However, to
compute the authentication path in an XMSS tree, we do not necessarily need
to know the message to sign but only its leaf index, we hence use that fact
to compute the different parts of the signature in parallel while delegating the
signature of the top root of each thread to that same thread (except for the
one computing the top tree root). This results into slightly unbalanced thread
as earlier thread will often compute one WOTS+ signature more than the last
one as shown in Figure 4. What is lost with that strategy is that the WOTS+
signature is normally computed during the computation of the leaf value. This
is impossible while we do not know the value of the root to sign, effectively
leading to computing this particular WOTS+ twice. Our results show that it
only has a marginal effect, and the speed-up is up equivalent to the number of
cores available as can be seen for the variant 128f-simple with SHA-256 intrinsics
in Figure 5.

Fig. 4. Graphical description of our multithreading strategy

5.4 Merging in best case scenarios

As one can notice, the FORS computation on 4 Cortex-A55 takes roughly the
same time than the computation of the XMSSMTpart of the signature on the

14 Gustavo Banegas, Florian Caullery

Fig. 5. Performance of multithreaded XMSSMT 128f-simple with SHA-256 intrinsics.
The abscissa is the number of threads an the ordinate is the number of XMSSMT

signature generated per second. The right graphic is for Cortex-A77 and the left one
for Cortex-A55.

three available Cortex-A77. Hence, by simply waiting for the computation of
FORS to be done on the Cortex-A55 and computing its WOTS+ signature on
one of the Cortex-A77, we can parallelize efficiently the full SPHINCS+ signa-
ture. We measured the performance in this optimal scenario and found out that
we can reach 114 signature per second compared to the 40 from the single thread
implementation and 8 of the reference implementation. That means an improve-
ment by a factor of roughly 3 when compared to the best implementation and
15 to the reference.

6 Conclusion

We have shown that SPHINCS+ can greatly beneficiate from a rather simple
parallelization strategy on a mobile platform and can come closer to the perfor-
mance of lattice-based cryptography but are still an order of magnitude slower
even while using a lot more resources. We also showed that it is more efficient
for hash-based signatures to use SIMD instructions to speed-up a single sym-
metric primitive computation than using SIMD to compute several primitives in
parallel.

Open Problems. One future work would be to see if that remark still stands for
ARM architecture equipped with Scalable Vector Extensions and SHA3 opti-
mizations. Also, we have seen that software-based side-channel protections are
too expansive for realistic deployment. One solution for this problem could be
to get the randomness from an efficient hardware Random Number Generator.
However, not every microprocessor has such capability and speeding up the ran-
dom generation in pure software is still an open problem.

Multi-Armed SPHINCS+ 15

References

1. ARM. Arm cortex-a55 core software optimization guide. https://developer.

arm.com/documentation/EPM128372/0300/?lang=en.
2. ARM. Arm cortex-a77 core software optimization guide. https://developer.

arm.com/documentation/swog011050/c/.
3. Shi Bai, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter

Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Dilithium: Algorithm
specifications and supporting documentation, February 2021. Specification v3.

4. Hanno Becker, Vincent Hwang, Matthias J. Kannwischer, Bo-Yin Yang, and
Shang-Yi Yang. Neon ntt: Faster dilithium, kyber, and saber on cortex-a72 and
apple m1. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2022(1):221–244, Nov. 2021.

5. Daniel J Bernstein, Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer, Stefan-
Lukas Gazdag, Andreas Hülsing, Panos Kampanakis, Stefan Koölbl, Tanya Lange,
Martin M. Lauridsen, Florian Mendel, Ruben Niederhagen, Christian Rechberger,
Joost Rijneveld, and Peter Schwabe. SPHINCS+, 2017. NIST Submission, avail-
able in https://sphincs.org/resources.html.

6. Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange, Ruben
Niederhagen, Louiza Papachristodoulou, Michael Schneider, Peter Schwabe, and
Zooko Wilcox-O’Hearn. SPHINCS: practical stateless hash-based signatures. In
Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology - EURO-
CRYPT 2015 - 34th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceed-
ings, Part I, volume 9056 of Lecture Notes in Computer Science, pages 368–397.
Springer, 2015.

7. Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben Niederhagen, Joost
Rijneveld, and Peter Schwabe. The SPHINCS+ signature framework. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019, London, UK, November 11-15, 2019, pages 2129–2146. ACM,
2019.

8. G. Bertoni, J. Daemen, M. Peeters G. Van Assche, and R. Van Keer. Keccak imple-
mentation overview. https://keccak.team/files/Keccak-implementation-3.2.
pdf.

9. Johannes Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS-a practical for-
ward secure signature scheme based on minimal security assumptions. In Interna-
tional Workshop on Post-Quantum Cryptography, pages 117–129, 2011.

10. Johannes Buchmann, Erik Dahmen, and Michael Schneider. Merkle tree traversal
revisited. In Johannes Buchmann and Jintai Ding, editors, Post-Quantum Cryp-
tography, pages 63–78, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

11. Internet Engineering Task Force. Use of the HSS/LMS Hash-Based Signature Al-
gorithm in the Cryptographic Message Syntax. Internet-Draft RFC 8708, Internet
Engineering Task Force, 2020.

12. Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky,
Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler, William Whyte,
and Zhenfei Zhang. Falcon: Fast-fourier lattice-based compact signatures over
NTRU, 2020. Specification v1.2.

13. Gregor Haas and Aydin Aysu. Apple vs. ema: Electromagnetic side channel attacks
on apple corecrypto. In Proceedings of the 59th ACM/IEEE Design Automation

https://developer.arm.com/documentation/EPM128372/0300/?lang=en
https://developer.arm.com/documentation/EPM128372/0300/?lang=en
https://developer.arm.com/documentation/swog011050/c/
https://developer.arm.com/documentation/swog011050/c/
https://keccak.team/files/Keccak-implementation-3.2.pdf
https://keccak.team/files/Keccak-implementation-3.2.pdf

16 Gustavo Banegas, Florian Caullery

Conference, DAC ’22, page 247–252, New York, NY, USA, 2022. Association for
Computing Machinery.

14. Andreas Hülsing. W-OTS+ - shorter signatures for hash-based signature schemes.
In Amr M. Youssef, Abderrahmane Nitaj, and Aboul Ella Hassanien, editors,
Progress in Cryptology - AFRICACRYPT 2013, 6th International Conference on
Cryptology in Africa, Cairo, Egypt, June 22-24, 2013. Proceedings, volume 7918 of
Lecture Notes in Computer Science, pages 173–188. Springer, 2013.

15. Andreas Hülsing, Lea Rausch, and Johannes Buchmann. Optimal parameters for
XMSS MT. In Alfredo Cuzzocrea, Christian Kittl, Dimitris E. Simos, Edgar R.
Weippl, and Lida Xu, editors, Security Engineering and Intelligence Informatics
- CD-ARES 2013 Workshops: MoCrySEn and SeCIHD, Regensburg, Germany,
September 2-6, 2013. Proceedings, volume 8128 of Lecture Notes in Computer Sci-
ence, pages 194–208. Springer, 2013.

16. Stefan Kölbl. Putting wings on SPHINCS. In Tanja Lange and Rainer Steinwandt,
editors, Post-Quantum Cryptography - 9th International Conference, PQCrypto
2018, Fort Lauderdale, FL, USA, April 9-11, 2018, Proceedings, volume 10786 of
Lecture Notes in Computer Science, pages 205–226. Springer, 2018.

17. Leslie Lamport. Constructing digital signatures from a one-way function. Technical
report, Technical Report CSL-98, SRI International Palo Alto, 1979.

18. Pierre-Yvan Liardet. A potholing tour in a soc. https://eshard.com/posts/

sca-attacks-on-armv8.
19. Dr. David A. McGrew, Michael Curcio, and Scott Fluhrer. Leighton-Micali Hash-

Based Signatures. Internet-Draft draft-mcgrew-hash-sigs-11, Internet Engineering
Task Force, 2019.

20. Ralph C Merkle. A certified digital signature. In Conference on the Theory and
Application of Cryptology, pages 218–238, 1989.

21. NIST. Post-Quantum Cryptography Call for Proposals.
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/

Post-Quantum-Cryptography-Standardization/Call-for-Proposals, 2018.
Accessed: 2020-01-01.

22. National Institute of Standards and Technology. Recommendation for stateful
hash-based signature schemes. Technical report, U.S. Department of Commerce,
Washington, D.C., 2020.

23. Ray A. Perlner, John Kelsey, and David A. Cooper. Breaking category five
SPHINCS+ with SHA-256. In Jung Hee Cheon and Thomas Johansson, editors,
Post-Quantum Cryptography - 13th International Workshop, PQCrypto 2022, Vir-
tual Event, September 28-30, 2022, Proceedings, volume 13512 of Lecture Notes in
Computer Science, pages 501–522. Springer, 2022.

24. Leonid Reyzin and Natan Reyzin. Better than BiBa: Short one-time signatures
with fast signing and verifying. In Lynn Margaret Batten and Jennifer Seberry, ed-
itors, Information Security and Privacy, 7th Australian Conference, ACISP 2002,
Melbourne, Australia, July 3-5, 2002, Proceedings, volume 2384 of Lecture Notes
in Computer Science, pages 144–153. Springer, 2002.

https://eshard.com/posts/sca-attacks-on-armv8
https://eshard.com/posts/sca-attacks-on-armv8
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Post-Quantum-Cryptography-Standardization/Call-for-Proposals

	Multi-Armed SPHINCS+

