
Breaking DPA-protected Kyber via the
pair-pointwise multiplication

Estuardo Alpirez Bock1, Gustavo Banegas2, Chris Brzuska3, Lukasz
Chmielewski4, Kirthivaasan Puniamurthy3, and Milan Šorf4

1 Xiphera LTD, Finland estuardo.alpirezbock@xiphera.com
2 Qualcomm France SARL, France gustavo@cryptme.in

3 Aalto University, Finland {chris.brzuska,kirthivaasan.puniamurthy}@aalto.fi
4 Masaryk University, Czech Republic {chmiel,xsorf}@fi.muni.cz

Abstract. We introduce a novel template attack for secret key recovery
in Kyber, leveraging side-channel information from polynomial multipli-
cation during decapsulation. Conceptually, our attack exploits that Ky-
ber’s incomplete number-theoretic transform (NTT) causes each secret
coefficient to be used multiple times, unlike when performing a complete
NTT.
Our attack is a single trace known ciphertext attack that avoids machine-
learning techniques and instead relies on correlation-matching only. Ad-
ditionally, our template generation method is very simple and easy to
replicate, and we describe different attack strategies, varying on the num-
ber of templates required. Moreover, our attack applies to both masked
implementations as well as designs with multiplication shuffling.
We demonstrate its effectiveness by targeting a masked implementation
from the mkm4 repository. We initially perform simulations in the noisy
Hamming-Weight model and achieve high success rates with just 13 316
templates while tolerating noise values up to σ = 0.3. In a practical setup,
we measure power consumption and notice that our attack falls short of
expectations. However, we introduce an extension inspired by known on-
line template attacks, enabling us to recover 128 coefficient pairs from a
single polynomial multiplication. Our results provide evidence that the
incomplete NTT, which is used in Kyber-768 and similar schemes, intro-
duces an additional side-channel weakness worth further exploration.

Keywords: Post-quantum Cryptography · Template attack · Kyber ·
Side-channel Attack · Single Trace.

1 Introduction

NIST selected Kyber [8,3] to be standardized as a post-quantum secure key
encapsulation mechanism (KEM) after a rigorous competition. The primary se-
curity requirement of the NIST competition is achieving message confidential-
ity against chosen-plaintext (CPA) and chosen-ciphertext attacks (CCA) based

∗ Author list in alphabetical order; see https://www.ams.org/profession/leaders/

CultureStatement04.pdf. Date of this document: 2024-01-09.

https://www.ams.org/profession/leaders/CultureStatement04.pdf
https://www.ams.org/profession/leaders/CultureStatement04.pdf

2 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

on plausibly post-quantum hard problems. Additionally, the competition em-
phasizes the resistance of implementations to side-channel attacks. This paper
builds upon the previous research exploiting differences in side-channel traces
based on the chosen inputs [21,20,6] to design a new single-trace template at-
tack against masked Kyber implementations. In particular, we target the decap-
sulation phase, leveraging templates to extract the long-term secret key from
the polynomial multiplication process. Our goal is to show that in this context,
masking is not sufficient protection, even considering relatively simple attacks.

Kyber’s key encapsulation (encryption) performs a matrix-vector multiplica-
tion in the ring of polynomials Rq = Zq[x]/(x256+1) and then adds a small noise
vector to the result. In turn, Kyber’s decapsulation (decryption), multiplies a
ciphertext b and a secret a, each of which corresponds to a polynomial. Poly-
nomials in Kyber are of degree 255 and their coefficients are integers between 0
and q − 1, with q = 3329. Kyber turns this core IND-CPA-secure scheme into
IND-CCA-secure encryption using the Fujisaki-Okamoto (FO) transform [16].
Black-box security against IND-CCA security, however, does not protect against
known/chosen ciphertext side-channel attacks, since the input ciphertext is al-
ways multiplied with the secret key right at the beginning of the decapsulation
process, cf. [14,33,17,4].

Number theoretic transform and Pair-pointwise multiplication. Stan-
dard polynomial multiplication has a quadratic time complexity. Therefore,
Kyber and similar lattice-based systems employ the Number Theoretic Trans-
form (NTT) to convert polynomials into a representation where multiplication
takes linear time. In the NTT domain, polynomial multiplications can be com-
puted point-wise. Given polynomials â and b̂ with coefficients (a0, a1, . . . , an−1)
and (b0, b1, . . . , bn−1) respectively, their point-wise multiplication is â ◦ b̂ =
(a0·b0, a1·b1, . . . , an−1·bn−1), whereby each pointwise multiplication is performed
independently. Kyber uses a small modulus and thus applies the NTT partially,
resulting in multiplications of polynomials of degree 1, e.g., (a0+a1X)·(b0+b1X)
which we refer to as pair-pointwise multiplication.

1.1 Our contribution

We propose an attack on the pair-pointwise multiplication of Kyber-like imple-
mentations and start by observing that Kyber executes more secret-dependent
operations than lattice-based schemes, which perform a full NTT:

1. Instead of one multiplication (as in full NTT), in pair-point multiplications,
three multiplications (cf. Equation (3)) depend on the same coefficient pair.

2. Since multiplications are performed mod q, the code requires 3 additional
operations to execute a modulus reduction after each multiplication.

3. While ai ∈ [0, . . . , q − 1] are 12-bit integers, the registers operate on 24-bit
and 28-bit integers before the modulus reduction. Thus, in the Hamming
weight model, the expected information per instruction is H(24) ≈ 3.34 and
H(28) ≈ 3.45 bits of information rather than only H(12) ≈ 2.84.

Breaking DPA-protected Kyber via the pair-pointwise multiplication 3

Starting from these observations, we devise an attack which extracts each coef-
ficient from a pair-point multiplication individually and requires q+q templates.
We next explore an extension of our attack that extracts pairs of coefficients from
each pair-point multiplication via q2 templates, but has a much higher success
probability given that the templates target complete regions of pair-point mul-
tiplications and thus have more samples for comparison with the target trace.
Then we validate our attacks against the masked implementation of [2]. We
first conduct simulations showing that a template attack with 100q templates
succeeds with the probability ≥ 0.999 even in the presence of Gaussian noise
with standard deviation σ ≤ 0.87. Our attack strategy requires a single target
trace from a known ciphertext and avoids complex attack methods like machine
learning, since it succeeds by performing simple correlation analysis. We refer
the reader to Section 3 for the specific steps of our attack and its adaptations.

Experimental results. We perform a power analysis attack also on the masked
implementation of Kyber [2] using the ChipWhisperer Lite platform [30]. We
detect leakage for both q+q and q2 attacks, but unfortunately it is not enough
to recover a pair of coefficients from a pair-point multiplication. We show that
the low success of these experiments is influenced by microarchitectural aspects
and the implementation we target: essentially, the power profile of a pair-point
multiplication is slightly influenced by the operations done before it started 5.

However, the success rate, especially for the q2 attack, is quite promising
and therefore, to make the attack work we come up with an extension inspired
by the Online Template Attack (OTA), originally used to attack elliptic curve
cryptography [5,6]. OTA is a powerful technique residing between horizontal
and template attacks with the main distinctive characteristics of building the
templates after capturing the target trace and not before. The combined attack
works as follows: first we reduce the number of candidate templates using the
q2 attack and then we launch iteratively OTA to limit the microarchitectural
noise. This way we are able to recover all the coefficients of 128 pair-pointwise
multiplications. In particular, we completely recover all coefficients for 3 attacked
target traces at the cost of maximum 43M templates. While these numbers are
high, they are required to recover all the coefficients from a single trace.

We also estimated how many templates we need to attack masked Kyber768
with the order 2. Here we need more templates since such implementation uses
6 full polynomial multiplications. For such attack we would need 78M to achieve
43% success rate and to increase it to 90% we need approximately 105M traces.

With respect to the experiments it is also an interesting question whether our
experiments may provide better results if we use electro-magnetic emanations
as the side-channel information instead of power consumption. It would be also
interesting to see whether we can lower the number of used templates. We leave
these investigations as future work.

5 For details the attacks and the experiments see Section 5.

4 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

1.2 State of the art

Attacks on the polynomial multiplication of Kyber were successfully performed
using correlation power analysis techniques [27]. However, early proposals recog-
nized the need to apply masking to the polynomial multiplication in lattice-based
schemes as a countermeasure against side-channel analysis [29,34,35]. Conse-
quently, many research efforts have focused on attacking other components of
the Kyber decapsulation process. Primas, Pessl, and Mangard introduced a tem-
plate attack on the inverse NTT during decryption, enabling them to recover
a decrypted message and subsequently extract the session key [32]. This attack
leverages belief propagation for template matching and has since been extended
and improved in subsequent works [31,17]. In a different approach, Dubrova, Ngo,
and Gärtner propose the use of deep learning techniques to recover the message
and subsequently extract the long-term secret key [15] from the re-encryption
step of decapsulation. Notably, research in this area has demonstrated the suc-
cess of deep learning in attacking lattice-based schemes [4,22,28,26]. Further SCA
attacks on masked implementations of Kyber were presented on the message en-
coding [37] and on the arithmetic-to-boolean conversion step [38]. Note that all
works cited above attack parts of Kyber other than the pointwise multiplication.

Our attack differs from the previous attacks in two significant ways when
applied to masked implementations: we directly extract the long-term secret
key from pointwise multiplication and we do not require deep learning or belief
propagation for template construction and matching. Although machine learning
(ML) techniques were shown to be particularly successful again post-quantum
schemes, for example, in [15], we prefer a more classical approach based on Pear-
son correlation matching due to the following reasons: (1) the attack description
is simpler, (2) the attack is easier to replicate since the adversary does not re-
quire the knowledge of ML, (3) it is easier to explain where the leakage comes
from and thus come up with countermeasures, and (4) crucially we wanted to
show that (even) classic side-channel methods effectively extract the key from
masked Kyber.

In parallel to this work, the authors of [40] developed a single-trace template
attack on Kyber’s polynomial multiplication. Their successful experiments val-
idate exploitable leakage in single traces, but their approach differs from ours.
They focus on key generation and encryption, exploiting additional side-channel
leakage due to the multiplication of secret polynomials with k values in matrix
A. Their method employs Hamming Weight templates for multiple intermedi-
ates, using key enumeration akin to belief propagation. Notably, they target an
unmasked implementation pqm4 [1], while we target the optimized masked im-
plementation mkm4 [2], enhancing the practicality of our approach for protected
libraries. See Appendix D for a detailed comparison.

2 Notation and preliminaries

We represent matrices by bold capital letters A, and vectors by bold small letters
b, b. Given a polynomial a =

∑n−1
i=0 aiX

i of degree n − 1, we usually write a

Breaking DPA-protected Kyber via the pair-pointwise multiplication 5

as a vector a = (a0, a1, a2, ..., an−1). Also, the operation · represents standard
multiplication between two integers, while ◦ represents point-wise multiplication
between two polynomials in NTT domain (cf. Subsection 2.2). When writing
polynomial a in NTT domain, we will often write â for clarity and also use the
hat notation for matrices, e.g., Â.

We next provide descriptions of Kyber. Our descriptions of the algorithms
will be simplified and we will elaborate mostly on the parts of the KEM that
are relevant to our attack. We refer the reader to the supporting documentation
from Kyber for more details on the KEM [3].

2.1 Kyber

As previously mentioned, Kyber is a lattice-based KEM. It relies on the hardness
of the Module-LWE problem. The latest parameters for Kyber are: n = 256, q =
3329, η = 2 and module dimension k = 2, 3, or 4. The security level of Kyber
increases with its module dimension (in the case k).

Algorithm 1 gives the overview of the key generation. The private key of
Kyber consists of a vector of polynomials of degree n = 256, and with coefficients
in Rq with q = 3329. The k determines the dimension of the vector. The functions
SampleU and SampleB are functions which uniformly sample values in the
ring Rq given a seed. The SampleU provides a uniform random matrix, and
SampleB gives uniform random vectors. The function H is a secure hash function
(SHA3 in Kyber).

Algorithm 2 shows the decapsulation algorithm. Note that the ciphertext is
first decompressed into its standard form b, and then in line 3 the ciphertext
is transformed to its NTT domain. After this transformation, a pair-pointwise
multiplication between â and b̂. This operation will be the target of our attack.

Alg. 1: Kyber-CCA2-KEM

Key Generation (simplified)

1 Public key pk , secret key sk Choose
uniform seeds ρ, σ, z;

2 Â ∈ Rk×k
q ← SampleU (ρ);

3 a, e ∈ Rk
q ← SampleB(σ);

4 â← NTT(a);

5 t̂← Â ◦ â + NTT(e);

6 pk ← (̂t, ρ); sk ← (â, pk ,H(pk), z);
7 return pk , sk ;

Alg. 2: Kyber-CCA2-KEM

Decryption (simplified)

1 secret key sk = (â, pk ,H(pk), z),
ciphertext c = (c1, c2)
Output: Shared key K

2 b, v ← Decompress(c1, c2);
3 m←

Decode(v−NTT−1(â)T ◦NTT(b)));
4 (K̄, τ)← H(m||H(pk));

5 c′ ← PKE.Enc(pk ,m, τ);

6 if c = c′ then
7 K ← KDF(K̄||H(c));
8 else
9 K ← KDF(z||H(c));

10 return K;

We do not describe the encryption and encapsulation functions of Kyber
since we do not attack these algorithms, for details, see Appendix A.

6 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

2.2 Number Theoretic Transform (NTT)

Kyber performs polynomial multiplications and speeds it up to linear time by
transforming the polynomials into the NTT domain, allowing for a so-called
pointwise multiplication between the polynomials. The NTT is a version of Fast
Fourier Transform (FFT) over a finite ring. To perform the transformation, one
evaluates the polynomial at powers of a primitive root of unity, which are usually
represented by the symbol ζ. We refer to [23] for details on how to implement
the NTT (in Kyber and Dilithium) and cover relevant aspects of Kyber below.
Kyber has dimension k, and each dimension has its own roots ζ0k , ζ

1
k , . . . , ζ

n−1
k .

In the following, we focus on a single dimension for ease of presentation.

The NTT on Kyber. In Kyber, the n-th root of unity does not exist and
therefore, the 2n-th roots of unity are used so that modulus polynomial Xn + 1
is factored into polynomials of degree 2 rather, i.e., Kyber performs an in-
complete NTT, where the last layer is not executed. Therefore, in Kyber, af-
ter the (incomplete) NTT transformation, a polynomial a corresponds to 128
polynomials of degree 1 each. Polynomial a is thus transformed to NTT(a) =
a0 + a1x, . . . , a254x + a255x. The incomplete transformation of the polynomials
to their NTT domains has an impact on the way, multiplications are performed
in Kyber. Namely, when computing the multiplication between two transformed
polynomials, we are not computing a point-wise multiplication between the co-
efficients of the polynomials (i.e. a · b = (a0b0 = c0, a1b1 = c1, . . . , anbn = cn)).
Instead, we multiply the coefficients pairwise and, for instance, the first two
coefficients of the resulting polynomial are obtained as follows:

c1 = a0b1 + a1b0, c0 = a0b0 + a1b1ζ. (1)

We will denote the multiplication in Equation (1) as pair-pointwise.

Multiplication optimizations. In Equation (1), we see a very straightforward
way of calculating a pair-pointwise multiplication, and obtaining the resulting
two adjacent coefficients of a polynomial. We see that a total of 5 multiplications
are performed. This multiplication process can be optimized via the Karatsuba
algorithm in such a way that we only need to perform 4 multiplications per each
pair-pointwise multiplication:

(a0 + a1x)(b0 + b1x) mod (x2 − ζ)

= a0b0 + ((a0 + a1)(b0 + b1) − a0b0 − a1b1)x+ a1b1x
2

= a0b0 + a1b1ζ + ((a0 + a1)(b0 + b1) − a0b0 − a1b1)x.

(2)

Thus, we can obtain the resulting polynomial c0 + c1x via

c0 = a0b0 + a1b1ζ, c1 = (a0 + a1)(b0 + b1) − (a0b0 + a1b1). (3)

Observe that Karatsuba multiplication is the most popular approach for im-
plementing pair-pointwise multiplication in Kyber. It allows us to reduce the

Breaking DPA-protected Kyber via the pair-pointwise multiplication 7

number of multiplications from five to four. The software implementation has
adopted the approach we analyze in this paper; it was also used in public hard-
ware implementations of Kyber such as [39].

Masking Kyber. There are several proposals to mask lattice-based schemes
such as NTRU [29] and Saber [7], whereby the following works present concrete
masking schemes for Kyber [10,18]. The masking of the schemes addresses various
secret-dependent operations, such as computing inverse NTT, the key derivation
function in the decapsulation process, or more commonly, masking polynomial
multiplication with the long-term secret. The approach for masking polynomial
multiplication in Kyber follows a similar pattern to other cryptographic schemes:
the secret is divided into shares, and secret-dependent operations are performed
on each share. The results are then combined. In the case of Kyber, this involves
splitting the secret polynomials into shares and multiplying the input ciphertext
separately with each share.

2.3 Online Template Attacks

Online Template Attack (OTA), introduced in [5,6], is a powerful technique resid-
ing between horizontal and template attacks. The main distinctive characteristic
is building the templates after capturing the target trace and not before like in
classical template attacks [12]. In general, creating templates in advance is fea-
sible when the number of possible templates is small, like for example, for a
binary exponentiation algorithm, where templates need to distinguish a single
branch result, which only requires two templates [12]. However, if the number of
leaking features increases, the number of different templates could be infeasible
to generate in advance. This scenario is where OTAs enter into play by capturing
templates on-demand based on secret guesses [5,6].

In general, OTA works as follows: the attacker creates templates correspond-
ing to partial guesses of the secret and then matches the templates to the target
trace; the best matching indicates which guess was correct. The attacker contin-
ues by iteratively targeting new parts of the secret until it is fully recovered.

In recent years OTA was applied in many scenarios, most notably, against
Frodo post-quantum proposal [9] and several crypto-libraries (libgcrypt, mbedTLS,
and wolfSSL) using microarchitectural side-channels [11].

We will use OTA in our experiments to improve the success rate of our attacks
to 100%, namely, we will first use attacks to learn the secret coefficients and the
remaining entropy we will recover using OTA (for details see Section 5).

3 Our attack

In this section, we detail our template attack on Kyber’s decapsulation, extract-
ing secret coefficients a during polynomial multiplication. We outline the attack
steps, explore variations with fewer or more templates impacting key recovery
success, and discuss its application to masked implementations. Additionally, we

8 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

explain its extension to target implementations employing shuffling in polyno-
mial multiplication.

3.1 Attack steps—extracting the key via q + q templates

The ciphertexts which we use for creating our templates have a specific struc-
ture when represented in NTT (see below). Since the (incomplete) NTT is an
efficiently computable bijection, we can create the desired structure by choosing
a vector of which we set 128 polynomials of degree 1 (in NTT domain) and
then compute the ciphertext by applying the inverse NTT (see Subsection 2.2)
to this vector. Additionally, we also perform the compression since the input
ciphertexts are provided to the decapsulation algorithm in compressed form (see
Algorithm 2).

We recall that the compression and decompression algorithms may introduce
some errors in the least significant bits of some coefficients of the polynomials.
Thus, when setting a value b̂ with a desired structure, and then transforming
it into its standard domain b, we should check whether b can be compressed
and decompressed such that Decompress(Compress(b)) = b. If that holds,
we ensure that on line 2 of Algorithm 2, NTT(b) is indeed transformed into
a vector with the structure we initially desired. In [17], the authors deal with
the same issue for their chosen ciphertext attack on the decapsulation process of
Kyber. The authors need a ciphertext b which on NTT domain would be sparse,
and they present two methods for generating such ciphertexts and ensuring that
they would preserve the desired properties after compression and decompression.
For our attack, it is much easier to deal with this issue since the structure we
desire for the NTT-ed value is much more flexible as we explain below.

In essence, for our attack, we simply require a ciphertext vector which on
NTT domain has either of the two following properties: (1) For each pair of co-
efficient values b0, b1, it holds that b0 ̸= b1, or (2) For any two coefficients bi, bj
in b it holds that bi ̸= bj . The first property is enough for attacking unprotected
and even masked implementations. The second property will be relevant for at-
tacking designs that implement shuffling of the polynomial multiplication (see
Subsection 3.2). Naturally, vectors with the second property can also be used
for attacking masked or unprotected implementations since the second property
implies the first property. Our advantage is that there is no restriction with re-
spect to the specific values these coefficients should have. Thus, when generating
the inputs, we could simply set the desired vector b̂, run the inverse NTT on it
and then check whether the result preserves its form after compression and de-
compression. Moreover, it is not even necessary that the vector in the standard
domain preserves its original form. It is only important that the resulting vec-
tor can be transformed via NTT into a vector with any of the properties listed
above. Therefore, it should be easy to just try out some values. Another simple
strategy could be to set a vector in the standard domain b with small coeffi-
cients. The small values ensure that the coefficients will preserve their original
values after compression and decompression. Then, we can simply apply NTT to
b and check whether the resulting vector b̂ has the desired properties. Finally,

Breaking DPA-protected Kyber via the pair-pointwise multiplication 9

we point out that finding input ciphertexts that achieve the second property
can be done very easily and we may not even need to choose those ciphertexts
ourselves. Thus, our attack can also be described as a known ciphertext attack.

We will now explain the attack that uses only 2q templates to recover a.

Step 1: Template building. We build our templates on a device identical to
the device we are going to attack. In this device, we are able to set the value of
the secret key. We start by building a template for the case that the secret â con-
sists only of zero coefficients: â = (00, . . . , 0255). For the input ciphertext, we can
choose any ciphertext for which the coefficients corresponding to b0 and b1 are
always different, i.e. b0 ̸= b1. For example, we consider the following ciphertext:
b̂ = (26490, 3171, 26492, 3173, . . . , 2649254, 317255). We record thus a power trace
and obtain the template T0. We repeat this process for all possible values be-
tween 0 and q−1 and obtain templates T1, T2, . . . , Tq−1. For each new template,
we change the value of â accordingly (i.e. setting â = (10, 11, 12, . . . , 1255), â =
(20, 21, 22, . . . , 2255), etc) and we always use the same ciphertext b̂.

Step 2: Obtaining the target trace. We now turn to the target device
running a key decapsulation of Kyber and querying it using the same ciphertext
b, which on NTT domain maps to the ciphertext b̂ we used in Step 1. We record
a power trace during execution and obtain our target trace Tt.

We now have our set of templates and our target trace and can perform
template matching. The idea is that we will obtain enough information to identify
good matches for operations involving the operands a1, since this coefficient is
used independently in several operations during each pair-point multiplication.
We assume that it would be harder to identify any matches for coefficients a0
since this coefficient is only used once during each pair-point multiplication.

Step 3: Template matching. We match the target trace Tt with each tem-
plate Tj and we expect to see no correlations between any regions of the traces,
unless both the target trace and the template used the same operands a1, b0, b1
within some pair-point multiplication. First, we compare the target trace with
the template T0. There are a total of 128 pair-point multiplications and, thus, a
total of 128 regions corresponding to this operation in the power traces. We can
numerate each region sequentially from 0 to 127. If we observe some correlations
between the target Tt and our template T0 on region i, then we will know that
the operand a2i+1 has the value 0. We then repeat the process with all remaining
templates, or until we have extracted all a1 operands of the polynomial â.

Step 4: Template building with extracted coefficients. We will now use
the coefficient values extracted in the previous step to build a new set of tem-
plates. These templates will help us extract all operands corresponding to a0 in
each pair-point multiplication, i.e. all even coefficients.

10 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

Let us denote by ψ an operand a1 whose value was extracted in the previ-
ous step. In essence, we can now build templates in the same way as we did
in Step 1, but the keys â will now have the following structure. For each
value j ∈ [0, 1, . . . , 3328] we construct a template for, i.e. each value we set
for the key during each template generation, we set the key as follows: â =
(j0, ψ1, j2, ψ3, . . . , j254, ψ255). We will denote the templates generated during this
step as Tj,ψ, and we will generate all of them the same way as described in Step

1, using the same input ciphertext b̂. We obtain a total of q new templates Tj,ψ.

Step 5: Template matching We perform template matching in the exact same
way as we did in Step 3, but using the templates Tj,ψ obtained in Step 4. We
now expect to see correlations, which will let us extract all a0 values. As opposed
to the template matching we performed on Step 3, we now will have more points
of comparison for finding correlations between some template Tj,ψ and the target
trace Tt. Namely, for a template corresponding to the correct j for some a0, we
now expect to find correlations not only on the single multiplication a0 · b0, but
also on all remaining operations dependent on a0 and a1, i.e. all operations within
the pair-point multiplication. Since the value for a1 has already been taken into
consideration, a correct guess for a0 will lead to a good match for the complete
region corresponding to the whole pair-point multiplication.

Now, let us discuss how the above attack can be implemented using a smaller
or a larger number of templates. The attack strategy remains the same, but
varying the number of templates might affect our attack success rate.

Attack using q templates. Ideally, a total of q templates would be enough for
extracting each coefficient in â one by one. In that case, we would only need to
perform the first three steps of the attack described above. Such an attack may
work if we assume, for instance, that the pair-point multiplication is implemented
according to Equation (1) and not optimized via Karatsuba. In that case, we’d
have more points of comparison for extracting a0 and a1 independently. q tem-
plates may also be enough, for instance, if each integer multiplication requires
several clock cycles, extending thus the points of comparison as well. If single
integer multiplications are enough for successfully performing template match-
ing, our attack could potentially generalize to implementations of Dilithium [25]
as well, when collecting q traces for the (larger) Dilithium modulus. Namely,
Dilithium actually performs complete NTTs on its polynomials and, thus, mul-
tiplications are actually point-wise and not pair-pointwise. Thus, each secret
coefficient is multiplied once, and then a modulus reduction is performed. In the
Hamming weight model (see Section 4), this might not provide sufficient leakage
(since Hamming leakage of k bits scales with

√
k), but the real-life leakage might

nevertheless suffice to attack also Dilithium.

Attack using q2 templates. Each pair-point multiplication involves two ad-
jacent coefficients of â, which we have referred so far as a0 and a1 (see Equa-
tion (1)). We could thus build templates for each possible pair of coefficients

Breaking DPA-protected Kyber via the pair-pointwise multiplication 11

a0, a1. When performing template matching, we will be comparing regions cor-
responding to the complete pair-point multiplication (similar to Step 5 in Sub-
section 3.1). This increases our chances of performing a key extraction.

Making templates for each possible pair of coefficients implies that we need
a total of q2 templates, which in Kyber translates to 33292 ≈ 11M templates.
While this number is much larger than what we considered initially, this attack
strategy is very likely to work. Acquiring 11M traces may need a couple of days.
However such an attack complexity is still considered a real threat.

Improving success rates of the attacks using Online Template Attack.
We now consider the case where the success rate of an attack (either q or q2) is
too low to recover all coefficients, e.g., when mounting a single-trace attack or
when the attack is affected by noise. Then, in the q2 attack, correlation analysis
might not rank the template with the correct pair (a0, a1) first, but rather as the
x-th most likely template. To recover (a0, a1), enumerating over all possible x
pairs is prohibitive for all 128 coefficient pairs since it would require 2128 trials.

In this case, it is worth to check whether the first pair of coefficients is always
determined correctly. Indeed, this is the case in our experiments (Section 5). Our
interpretation is that values in registers set by multiplications in previous itera-
tions slightly affect the power consumption when the registers are overwritten.
On the other hand, since there is no previous operation for the first multiplica-
tion, the initial register state is deterministic, and the attack is successful. Thus,
the attack improves if we proceed adaptively and only attack the y-th pair after
having correctly recovered the y−1 coefficient pairs before. Since all registers are
now set correctly, the attack on the y-th multiplication should succeed similarly
to the attack on the first multiplication. This attack creates template online, i.e.,
after obtaining the target power trace. Similarly to improving the q2 attack, it
can also improve the accuracy of the q + q attack and all intermediate variants.
For details about this method in practice, see Section 5.

3.2 Attack on DPA-protected Kyber

We can apply the previously described attack analogously on masked implemen-
tations of Kyber. In this case, we recover each share of the secret key using our
method and then add them to obtain the secret key.

Also in this case, one target trace suffices if each share is used independently
and sequentially, which is the case in software implementations that first multiply
the ciphertext with share one and then multiply the ciphertext with share two
(and so on in case of higher-order masking). For hardware implementations, there
exists the possibility of performing some multiplications in parallel as long as
the Kyber module counts on more than one multiplier. However, not all designs
of Kyber can afford to have several multiplier due to the costs in the area.

Let us assume that we are attacking a masked implementation that produces
shares with all coefficients taking values between 0 and q−1 = 3328. In this case,
we will be able to perform a key extraction using the same number of templates

12 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

as for an unmasked implementation. Namely, the templates we need for attack-
ing such a masked implementation correspond to multiplications between known
coefficients (for our chosen ciphertext), and unknown coefficients with values be-
tween 0 and q−1. Thus, after obtaining all q templates, we only need to perform
the template matching twice with respect to an unmasked implementation (once
for each share). The number of templates matchings we perform increases lin-
early with the masking degree. However, if we perform template matching over a
power trace corresponding to the complete multiplication process involving both
shares, we only need to perform the matching once for each template. For each
0 ≤ j ≤ q − 1, each match will reveal which coefficient in any of the two shares
and has a value equal to j. Note, however, that if the masked implementation
operates on a modulus notably larger than q, the complexity increases linearly,
and the success probability is affected (see Section 6).

Attack on shuffled implementations—distinguishing via the input ci-
phertext A potential countermeasure against our attack might be randomizing
the shuffling of pair-point multiplications. While a shuffled Kyber implementa-
tion would still allow us to correctly extract all coefficients, determining their
original order in the resulting polynomial becomes challenging. However, we find
that our attack can be adapted for effectiveness on shuffled implementations with
just one target trace. Using a ciphertext with unique coefficient values for tem-
plate generation, we obtain templates as before. During template matching, each
template is attempted n

2 times, with varied pair-point multiplication positions.
Successful matches reveal operand values and their original positions, exposing
the secret coefficient’s location. This attack initially focuses on extracting coef-
ficients a2i+1 (specifically, coefficient a1 within each pair-point multiplication),
akin to our approach in Subsection 3.1.

Generating the inputs. We choose an input ciphertext for which (in the NTT
domain) each of its coefficients has a unique value, i.e., given the ciphertext b̂ =
b0, b1, b2, . . . , b255, it holds that for each bi, bj , with i ̸= j, bi ̸= bj . For illustration

purposes, let us set b̂ as follows: b̂ = 90, 781, 17532, 73, . . . , 17254, 104255.

Template building. We build templates like described in Step 1 of Subsec-
tion 3.1. Thus, we obtain a total of q templates.For a coefficient j, the templates
will be of the form: Tj = (j0 + j1) · (90 + 781), . . . , (j254 + j255) · (17254 + 104255).

Obtaining the target trace. We obtain the target trace the same way as
described in Step 2 of Subsection 3.1, i.e. by providing our chosen ciphertext b̂
as input. Moreover, note that the resulting target trace corresponds to a shuffled
evaluation of the pair-pointwise multiplication. For instance, the target trace
might correspond to the following shuffled sequence of operations

Tt = (a22 + a23) · (b22 + b23), (a104 + a105) · (b104 + b105), . . . ,

(a0 + a1) · (b0 + b1), (a56 + a57) · (b56 + b57).

Breaking DPA-protected Kyber via the pair-pointwise multiplication 13

Secret coefficient extraction and location identification via template
matching. Now, we match our templates with the target trace in a similar
way as described in Step 3 of Subsection 3.1 with some additional steps. For
each template Tj , we will perform a template matching with the target trace as
follows.

(1) We first test a matching with the template Tj and target Tt the same way as
in our original attack. Let us assume that we find a match at position i, revealing
that the secret coefficient used at that position equals j, i.e. a2i+1 = j. Let us
recall that at this point, the template Tj corresponds to a non-shuffled sequence
of pair-point multiplications and that for generating the template and the target
traces, we used a ciphertext polynomial whose coefficients (in the NTT domain)
are all different from each other. Finally, observe that for obtaining a match,
all input operands used within the analyzed computations need to be the same,
i.e., for a pair-point multiplication, the same b0, b1 and a1 need to be used in the
template and in the target.

Given the observations above, we know that if now we obtain a match at
position i, then the original, non-shuffled position of the extracted coefficient in
the secret key is i. The coefficients of our input ciphertext serve as orientation
since they are unique, and we know their positions in the templates.

(2) We will now try to find out whether a value j appears in some shuffled pair-
point multiplication, and we will also find out where in the non-shuffled key j
is located. For this, we start shifting the multiplication regions of our trace Tj .
Concretely, we will shift the positions of all pair-point multiplications. Thus,
for each template, there is a total of 128 shifts we can do since each template
corresponds to 128 pair-point multiplications. Let w denote the number of shifts
we do on a template and let T>wj denote the template built for the coefficient j
and shifted a total of w times. For instance, if we shift the multiplications once,
we obtain the template with the following form: T>1

j = (j254 + j255) · (b254 +
b255), (j0 + j1) · (b0 + b1), (j2 + j3) · (b2 + b3), . . . , (j252 + j253) · (b252 + b253).

(3) Next, we perform template matching with T>wj and Tt. Let us assume that
we find a match at position i. The match tells us that a2i+1 in the target trace
has the value j. However, since we know that T>wj shifted the pair-point multipli-
cations by w positions, we know that that it is actually the coefficient a2(i−w)+1

in the (non-shuffled) secret key which equals j.

(4) We repeat the same matching + shifting process with all templates until we
recover all coefficients. Recall that we are recovering all coefficients a1 for each
pair-point multiplication. Once we have recovered them, we can build a new set
of q templates by placing all recovered coefficients in their shuffled position and
then just repeat the matching process from Step 5 in Subsection 3.1. This will
let us recover all coefficients a0 in each (shuffled) pair-point multiplication. In
the previous step, we learnt the original (non-shuffled) position of each multipli-
cation, we will also know the original position of the extracted a0 coefficients in
the non-shuffled secret key.

14 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

4 Simulations

This section presents simulations for the masked Kyber implementation [18,2].

4.1 Implementation of pair-point multiplication

Listing 1.1: Multiplication.

1 ldr poly0, [aptr], #4
2 ldr poly1, [bptr], #4
3 ldr poly2, [aptr], #4
4 ldr poly3, [bptr], #4
5

6 ldrh zeta, [zetaptr], #2
7

8 smultt tmp, poly0, poly1
9 montgomery q, qinv, tmp, tmp2

10 smultb tmp2, tmp2, zeta
11 smlabb tmp2, poly0, poly1, tmp2
12 montgomery q, qinv, tmp2, tmp
13

14 smuadx tmp2, poly0, poly1
15 montgomery q, qinv, tmp2, tmp3

The code which we analyze im-
plements the pair-pointwise multiplica-
tion as in Listing 1.1 and corresponds
to the Karatsuba multiplication algo-
rithm [24] (see Equation (3) for refer-
ence). The procedure first loads a pair
of secret coefficients a0||a1 into a 32-
bit register poly0 and a pair of public
coefficients b0||b1 into a 32-bit register
poly1. The coefficients a0, a1, b0, and
b1 are 12-bit integers in {0, . . . , 3328}.
In this overview, we skip over the in-
structions at lines 3 and 4 which are the
analogous load operations for the next Listing 1.2: Montgomery subroutine.

1 .macro montgomery q, qinv, a, tmp
2 smulbt \tmp, \a, \qinv
3 smlabb \tmp, \q, \tmp, \a
4 .endm

pair of coefficients in the key and in the
ciphertext. Next, in line 8, we multiply
the top parts of the registers poly0 and
poly1, obtaining a product correspond-
ing to a1 ·b1. This product is a 24-bit result and it is stored in tmp. The value in
tmp is then reduced mod 3329 (line 9). Listing 1.2 gives the code of the Mont-
gomery subroutine and Appendix B explains why the deployed Montgomery
reduction algorithm for mod 3329 computation induces 3 further operations on
28-bit values. Next, the result is multiplied by ζ (line 10), added to a0 · b0 (line
11) and reduced mod 3329 via Montgomery reduction (line 12), resulting in the
term a1 · b1 · ζ+a0 · b0 (cf. Equation (1)). Next, the code sums of the cross terms
as a1 · b0 + a0 · b1 (line 14) and reduces it mod 3329 (line 15).

4.2 Hamming weight model

We analyze our attack in the Hamming weight model which leaks the number of
ones in the processed values. We assume that the power consumption of a device
correlates with the Hamming weights of the computed states. In our analysis,
we will check whether each possible secret coefficient ai ∈ {0, .., 3328} (or each
possible pair of coefficients) leads to a unique sequence of hamming weight values
during the pair-point multiplication. If this is the case, then we expect that the
leakage coming from a pair-point multiplication will allow us to identify the value
of the secret coefficients used within that pair-point multiplication.

For the first heuristic estimate, let us compute an upper bound on the leaked
information by assuming that all computations correspond to independent uni-
formly random k-bit strings. The expected information we obtain from the Ham-
ming weight of a uniformly random k-bit string |log Pr[HW = i]| is the number

Breaking DPA-protected Kyber via the pair-pointwise multiplication 15

of bits of information which we weigh by the probability of obtaining a state with
hamming weight i, leading to the expected information (or Shannon Entropy)

H(k) :=

k∑
i=0

Pr[HW = i] · |log (Pr[HW = i])| =

k∑
i=0

(
k
i

)
2k

∣∣∣∣∣log

((
k
i

)
2k

)∣∣∣∣∣
for a uniformly random k-bitstring. Asymptotically, the expected information
H(k) grows linearly in

√
k. For example, we have H(24)=3.34 and H(28)=3.45.

Recall that our attack using q+q templates (see Subsection 3.1) first extracts
a1 before extracting a0. Concretely, the five operations up to and including
line 10 in Listing 1.1 only depend on a1. They first write a 24-bit value for
multiplication of a1 and b1, then three 28-bit values in the Montgomery reduction
(cf. Appendix B) and then another 24-bit value for multiplication of a1 ·b1 ·ζ. We
obtain the overall expected information of H(24) + 3 · H(28) + H(24) ≈ 13.69
bits leakage about a1 only. Since a1 is a 12-bit value, it is plausible that we
extract a1 correctly with good probability from these five operations, even if not
always, since 13.69 bits is only slightly above 12 bits and the random variable is
concentrated around its expectation rather than exactly at its expectation.

To extract both values a0 and a1, we have two Montgomery reductions (line 12
and line 15), each resulting in 3 more operations, leaking together 6·H(28) ≈ 20.7
additional bits and the computation and addition of cross terms in line 14, which
generate another H(24)-bit value, leading to an overall leakage of 13.69 + 20.7 +
3.34 = 37.73 bits to extract a 12 + 12 = 24-bit value (a0, a1), suggesting that
trying out all pairs should succeed with a high probability. Appendix C confirms
our heuristic calculus with simulations. Additionally, the heuristic calculations
and the simulations from the next section suggest that the q + q attack and the
q2 attack are robust even when adding a certain amount of Gaussian noise.

4.3 Simulations of Gaussian Noise

We now simulate the aforementioned operations while adding a small Gaussian
noise with standard deviation σ to the simulated target trace. Subsequently, we
list the best coefficient candidates according to the L2-norm.

Using this method (see Appendix C for details), we analyze the probability
of a2i being amongst the top 1, 2, 3, 10, 100 candidates (cf. Fig. 6) when ana-
lyzing only the operations that depend on a2i alone as well as the probability
of (a2i, a2i+1) being amongst the top candidates (cf. Fig. 7) when analyzing all
operations depending on (a2i, a2i+1). Since the probability of a2i being the top
1 candidate is only 0.9475 when no noise is added, the probability of obtaining
all 128 correct a2i is (0.9475)128 ≈ 0.001 and thus too low to be useful. However,
up to σ = 0.87, the probability of a2i being amongst the top 100 candidates is
≥ 0.999 and thus, up to a noise of σ = 0.7, with probability 0.99128 ≈ 0.88, we
can significantly reduce the search space for the coefficient pairs from q2 to 100q.

For larger noise, we need to run the q2 attack. The probability of (a2i, a2i+1)
being the top 1 candidate drops below 15

16 at σ = 0.54. In turn, the probability
of (a2i, a2i+1) being amongst the top 100 candidates stays above 0.99 up to

16 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

σ = 0.72. When aiming to brute-force the remaining uncertainty, in expectation,
for σ = 0.72, we have 15

16 · 128 ≈ 16 positions where we need to try out 100

candidates yielding a computation cost of 10016 ≤ 220 times
(
128
16

)
≈ 2128. The

brute-forcing cost is thus dominated by the binomial coefficient
(
128
ℓ

)
, determined

by the number ℓ positions which we need to brute-force.
(
128
ℓ

)
remains below 240

for ℓ ≤ 5. For each noise rate, we can now compute the probability of extracting
all 128 coefficients if we brute-force only up to 5 positions as follows:

p128100 ·
5∑
ℓ=0

(
128

ℓ

)
· (1 − p1)ℓ · p128−ℓ1 ,

where p100 is the probability that (a2i, a2i+1) is amongst the top 100 candidates
and p1 is the probability that it is the top candidate. This probability is almost
1 when σ ≤ 0.4 and then drops to almost 0 sharply for 0.4 ≤ σ ≤ 0.55, also see
the dashed line in Fig. 7.

5 Experimental evidence

This section presents experimental results for three attack variations from Sec-
tion 3: q2, q, and an improved version using an online template attack (OTA)6.
Similar to the original OTA [5,6], we calculate the correlation between the target
trace and a template, resulting in a matching trace that indicates a match. If the
secret coefficient pair in the template matches that used in some multiplication
in the target trace, we observe a region in the matching trace with values close
to one. We first describe our experimental setup and then discuss our results.

We target the masked Kyber implementation from the mkm4 repository [18].
Our experiments use the same setup as described in that paper, utilizing the
ChipWhisperer Lite platform with an STM32F303 target [30], featuring an Arm
Cortex-M4 core. This setup ensures low noise and well-aligned traces. Our focus
is the poly basemul function, where we compute pair-pointwise multiplication.

In our experiments, we use the same physical instance of the ChipWhisperer
device for profiling and attacking, which is the best scenario for an attacker.
However, this might not reflect a real-world scenario and we leave investigating
the portability of templates in our attack as future work.

Before launching the attack, we need to select relevant regions of the traces.
After testing multiple methods and approaches, the Difference-of-Means ap-
proach described in [5] proved to be the best. We always select 33 points of
interest per pair-pointwise multiplication for all our attacks.

In the q + q attack, we observe a limited leakage and the results are rather
modest. We obtain a more accurate success rate for the first pair-pointwise mul-
tiplication than the remaining ones. On average, the correct candidate for the
first multiplication is ranked at 282, and for all multiplications, it is at 1623 (out

6 Paper supplementary materials, the attack scripts in particular, are available at:
https://github.com/crocs-muni/Attack_Kyber_ACNS2024

https://github.com/crocs-muni/Attack_Kyber_ACNS2024

Breaking DPA-protected Kyber via the pair-pointwise multiplication 17

Fig. 1: Characterization: target trace (top), subtraction of the target trace from
an incorrect template (middle) and from the correct template (bottom).

of 3329). This is insufficient for the attack to succeed. Improving the success
rate, possibly using deep learning, is left for future work.

Next, we attempt q2 attack. We obtain the q2 templates for all pairs of
coefficients and each template is exactly one trace. Therefore, for this experiment,
we use exactly 11082241 template traces to attack single target traces separately.

In Figure 1, we illustrate our method for visualizing leakage, following the
approach outlined in [21]. This approach involves calculating the difference be-
tween a template and our target trace, as depicted in Figures 3 and 4 of [21].
The top trace in Figure 1 represents our target trace, with the highlighted area
indicating the calculation of a pair-point multiplication. The middle trace shows
the result when we subtract the target from a template that does not match the
secret coefficients used in the highlighted pair-point multiplication. The bottom
trace corresponds to the difference between the target and a template using the
correct pair of secret coefficients. Notably, the highlighted region in this trace
contains sample values very close to zero.

When comparing a target traces to the template corresponding to the pair of
coefficients found in the secret key, our difference trace consistently contains a
region with samples close to zero, as shown at the bottom of Figure 1. However,
when attempting to compare a template for a pair of coefficients that do not
appear in the key, the difference trace does not exhibit such a low region.

In the q2 attack, we compare each pair of coefficients with templates, result-
ing in an ordered list of candidate values. Notably, there is a significant difference
in accuracy between the first pair of coefficients and the rest. As shown in Fig-
ure 3, the first pair is correctly recovered in about 86% of cases, while the average
success rate across all multiplications is 34%. This discrepancy is due to traces
being influenced by previous multiplications, as illustrated in Figure 2, where the
coefficient from the first multiplication affects slightly the subsequent multiplica-

18 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

Fig. 2: The effect of previous multiplication on the following one: the correlation
between the current multiplication value and the whole trace (in blue).

Fig. 3: q2 attack success rate: blue line corresponds to the first candidate being
correct and orange line to the correct candidate being in the top 100 results.

tion, too. The first multiplication is not affected by any previous multiplication
and that is why the corresponding success rate is much better.

Given the high success rates of the q2 attack in recovering the first multiplica-
tion, we can reduce the number of candidate templates and initiate a combined
attack using both q2 and OTA. We begin with the q2 attack. Assuming success-
ful recovery of the first multiplication, we generate a new set of templates by
combining the top two results for the first multiplication with a select number of
top candidates for the second multiplication. These new templates cover a larger
portion of the trace and are fewer in number, resulting in improved matching
rates. We now repeat this process, assuming the first two multiplication coef-
ficients have been recovered correctly, iterating through the whole trace. The
main downside of this approach is requiring additional templates.

Breaking DPA-protected Kyber via the pair-pointwise multiplication 19

Fig. 4: Left: success rates of the full attack on masked Kyber768 wrt. the number
of captured templates, estimated from 100 random target traces. Right: the extra
number of templates required for the OTA attack (only non-zero values).

We successfully recover all coefficients for 3 attacked traces with this ap-
proach, at the cost of the increased number of templates – 20 600 000, 43 000 000,
and 20 600 000, respectively. These numbers can be lowered, as described in the
analysis of the required number of traces in the following section. With our
setup, gathering additional 15 000 templates per multiplication takes about 9
days 7 and cover 87% of attacked traces. The success rates for different amounts
of templates for the full attack on masked Kyber768 are shown in Figure 4.

5.1 Attack analysis

In order to launch the q2 + OTA attack, it is necessary to collect the 11M tem-
plates for the q2 attack and the additional traces for each multiplication. Based
on the analysis of 100 random traces, the additional requirement is, on average
13 000 - 15 000 per candidate for each multiplication, as shown in Figure 4.

To successfully attack unmasked Kyber768, we need to repeat the attack
3 times, reducing the experimental success rate to 65%. Kyber768 performs
three polynomial multiplications: the initial poly basemul and two subsequent
poly basemul acc operations. The poly basemul acc function is similar to op-
eration poly basemul but also accumulates its results into the previous multi-
plication, hence the name “accumulation.”

The code of poly basemul acc mixes accumulation instructions with other
multiplication instructions, necessitating separate template collection. These
templates rely on results from previous multiplications. However, we already
have these coefficients from previous attacks (notably, on poly basemul). While

7 Note, however, that we did not optimize our setup for the speed of acquisition.

20 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

the attack on poly basemul acc should perform better due to more leaking in-
structions, new templates must be collected for each execution, depending on
the previously recovered coefficients.8 For a complete attack on unmasked Ky-
ber768, we would need approximately 44.5M templates: 3 × 11 million (for 3
executions) and 3× 15 000× 2× 128. Here, we assume that we need 15 000 addi-
tional templates per multiplication and a conservative estimate that we cannot
reuse templates for poly basemul acc if accumulation inputs differ. Based on
preliminary characterization, it seems that re-using templates for different inputs
is challenging and we leave it to be investigated in future work.

To attack masked Kyber768 with order 2, we need to execute attack 6 times:
2 times for poly basemul and 4 times for poly basemul acc. For poly basemul

we would need to collect templates once, but for poly basemul acc templates
need to be collected each time. Therefore, we would need the following number
of templates: 5 ∗ 11M + 6 ∗ 15000 ∗ 2 ∗ 128 ≈ 78M to achieve 43% success rate;
to increase it to 90% we need approximately 105M traces as shown in Figure 4.
At the time of writing, the current setup was able to capture 1 500 traces per
minute. At this rate, gathering the full 78M templates would take about 45 days.
In general, we leave improving the efficiency of this attack as future work.

6 Possible countermeasures

One possible countermeasure against our attack may be the random shuffling
of the operations within each pair-point multiplication (see the listings in Sec-
tion 4). Moreover as discussed in Subsection 3.2, masking schemes with coeffi-
cients with larger values would imply an increase in the number of templates
needed for our attack and in the chances of getting false positive matches. There
also exist schemes which blind the secret coefficients [41,19] in a similar way
as the blinding countermeasure for elliptic curve crypto [13] and schemes which
mask the input ciphertext [34]. Parallelizing pair-point multiplications requires
designs with spare multipliers, but it adds extra noise to computations, making
our attack more difficult. Also, if Kyber employs a complete NTT and actual
point multiplication between secret and known coefficients, our attack becomes
more challenging given the reduced number of secret-dependent operations.

Acknowledgements. E. A. Bock conducted part of this research while at Aalto
University. His work at Aalto and the work from K. Puniamurthy were supported
by MATINE, Ministry of Defence of Finland. The work of L. Chmielewski and
M. Šorf was supported by the Ai-SecTools (VJ02010010) project. Computational
resources were provided by the e-INFRA CZ project (ID:90254), supported by
the Ministry of Education, Youth and Sports of the Czech Republic.

8 Initial tests hint at a 30% acquisition reduction for the OTA step with a single
poly basemul acc experiment. However, we exclude this result from our estimates,
reserving exploration of this optimization for future work.

Breaking DPA-protected Kyber via the pair-pointwise multiplication 21

References

1. Github repository: Collection of post-quantum cryptographic algorithms for the
arm cortex-m4. Last modified: 2023, https://github.com/mupq/pqm4.

2. Github respository for masked Kyber presented in [18], 2022. https://github.

com/masked-kyber-m4/mkm4.
3. Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim

Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS–Kyber (version 3.0) – submission to round 3 of the
NIST post-quantum project. submission to the NIST post-quantum cryptography
standardization project, 2020. https://pq-crystals.org/kyber/data/kyber-

specification-round3-20210804.pdf.
4. Linus Backlund, Kalle Ngo, Joel Gärtner, and Elena Dubrova. Secret key recovery

attacks on masked and shuffled implementations of CRYSTALS-Kyber and saber.
Cryptology ePrint Archive, Paper 2022/1692, 2022. https://eprint.iacr.org/

2022/1692.
5. Lejla Batina, Lukasz Chmielewski, Louiza Papachristodoulou, Peter Schwabe, and

Michael Tunstall. Online template attacks. In Willi Meier and Debdeep Mukhopad-
hyay, editors, Progress in Cryptology - INDOCRYPT 2014 - 15th International
Conference on Cryptology in India, New Delhi, India, December 14-17, 2014, Pro-
ceedings, volume 8885 of Lecture Notes in Computer Science, pages 21–36. Springer,
2014.

6. Lejla Batina, Lukasz Chmielewski, Louiza Papachristodoulou, Peter Schwabe, and
Michael Tunstall. Online template attacks. Journal of Cryptographic Engineering,
9:1–16, 04 2019.

7. Michiel Van Beirendonck, Jan-Pieter D’Anvers, Angshuman Karmakar, Josep
Balasch, and Ingrid Verbauwhede. A side-channel-resistant implementation of
SABER. ACM J. Emerg. Technol. Comput. Syst., 17(2):10:1–10:26, 2021.

8. Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS
- Kyber: A cca-secure module-lattice-based KEM. In 2018 IEEE European Sym-
posium on Security and Privacy, EuroS&P 2018, London, United Kingdom, April
24-26, 2018, pages 353–367. IEEE, 2018.

9. Joppe W. Bos, Simon Friedberger, Marco Martinoli, Elisabeth Oswald, and Martijn
Stam. Assessing the feasibility of single trace power analysis of frodo. In Carlos
Cid and Michael J. Jacobson Jr., editors, Selected Areas in Cryptography - SAC
2018 - 25th International Conference, Calgary, AB, Canada, August 15-17, 2018,
Revised Selected Papers, volume 11349 of Lecture Notes in Computer Science, pages
216–234. Springer, 2018.

10. Joppe W. Bos, Marc Gourjon, Joost Renes, Tobias Schneider, and Christine van
Vredendaal. Masking Kyber: First- and higher-order implementations. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2021(4):173–214, 2021.

11. Alejandro Cabrera Aldaya and Billy Bob Brumley. Online template attacks: Re-
visited. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2021(3):28–59, July 2021. Artifact available at https://artifacts.iacr.org/

tches/2021/a11.
12. Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks. In Burton S.

Kaliski, çetin K. Koç, and Christof Paar, editors, Cryptographic Hardware and
Embedded Systems - CHES 2002, pages 13–28, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg.

https://github.com/mupq/pqm4
https://github.com/masked-kyber-m4/mkm4
https://github.com/masked-kyber-m4/mkm4
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://eprint.iacr.org/2022/1692
https://eprint.iacr.org/2022/1692
https://artifacts.iacr.org/tches/2021/a11
https://artifacts.iacr.org/tches/2021/a11

22 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

13. Jean-Sébastien Coron. Resistance against differential power analysis for ellip-
tic curve cryptosystems. In Çetin K. Koç and Christof Paar, editors, Crypto-
graphic Hardware and Embedded Systems, pages 292–302, Berlin, Heidelberg, 1999.
Springer Berlin Heidelberg.

14. Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid Ver-
bauwhede. Timing attacks on error correcting codes in post-quantum schemes.
In Proceedings of ACM Workshop on Theory of Implementation Security Work-
shop, TIS’19, page 2–9, New York, NY, USA, 2019. Association for Computing
Machinery.

15. Elena Dubrova, Kalle Ngo, Joel Gärtner, and Ruize Wang. Breaking a fifth-order
masked implementation of crystals-kyber by copy-paste. In Proceedings of the 10th
ACM Asia Public-Key Cryptography Workshop, APKC ’23, page 10–20, New York,
NY, USA, 2023. Association for Computing Machinery.

16. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and
symmetric encryption schemes. J. Cryptol., 26(1):80–101, 2013.

17. Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska, Thomas
Schamberger, Silvan Streit, Emanuele Strieder, and Christine van Vredendaal. Cho-
sen ciphertext k-trace attacks on masked CCA2 secure Kyber. IACR Trans. Cryp-
togr. Hardw. Embed. Syst., 2021(4):88–113, 2021.

18. Daniel Heinz, Matthias J. Kannwischer, Georg Land, Thomas Pöppelmann, Peter
Schwabe, and Amber Sprenkels. First-order masked Kyber on ARM Cortex-M4.
Cryptology ePrint Archive, Paper 2022/058, 2022. https://eprint.iacr.org/

2022/058.
19. Daniel Heinz and Thomas Pöppelmann. Combined fault and dpa protection for

lattice-based cryptography. IEEE Transactions on Computers, 72(4):1055–1066,
2023.

20. Naofumi Homma, Atsushi Miyamoto, Takafumi Aoki, Akashi Satoh, and Adi
Shamir. Collision-based power analysis of modular exponentiation using chosen-
message pairs. In Elisabeth Oswald and Pankaj Rohatgi, editors, Cryptographic
Hardware and Embedded Systems - CHES 2008, 10th International Workshop,
Washington, D.C., USA, August 10-13, 2008. Proceedings, volume 5154 of Lec-
ture Notes in Computer Science, pages 15–29. Springer, 2008.

21. Michael Hutter, Mario Kirschbaum, Thomas Plos, Jörn-Marc Schmidt, and Stefan
Mangard. Exploiting the difference of side-channel leakages. In Werner Schindler
and Sorin A. Huss, editors, Constructive Side-Channel Analysis and Secure Design
- Third International Workshop, COSADE 2012, Darmstadt, Germany, May 3-4,
2012. Proceedings, volume 7275 of Lecture Notes in Computer Science, pages 1–16.
Springer, 2012.

22. Yanning Ji, Ruize Wang, Kalle Ngo, Elena Dubrova, and Linus Backlund. A side-
channel attack on a hardware implementation of CRYSTALS-Kyber. Cryptology
ePrint Archive, Paper 2022/1452, 2022. https://eprint.iacr.org/2022/1452.

23. M. J. Kannwischer. Polynomial Multiplication for Post-Quantum Cryptography.
PhD thesis, Nijmegen U., 2022.

24. A. Karatsuba and Yu. Ofman. Multiplication of Multidigit Numbers on Automata.
Soviet Physics Doklady, 7:595, January 1963.

25. Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,
Gregor Seiler, Damien Stehlé, and Shi Bai. CRYSTALS-Dilithium, 2020. https://
csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions.

26. Soundes Marzougui, Ievgen Kabin, Juliane Krämer, Thomas Aulbach, and Jean-
Pierre Seifert. On the feasibility of single-trace attacks on the Gaussian sampler

https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/1452
https://csrc.nist.gov/projects/ post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/ post-quantum-cryptography/round-3-submissions

Breaking DPA-protected Kyber via the pair-pointwise multiplication 23

using a CDT. In Elif Bilge Kavun and Michael Pehl, editors, Constructive Side-
Channel Analysis and Secure Design - 14th International Workshop, COSADE
2023, Munich, Germany, April 3-4, 2023, Proceedings, volume 13979 of Lecture
Notes in Computer Science, pages 149–169. Springer, 2023.

27. Catinca Mujdei, Lennert Wouters, Angshuman Karmakar, Arthur Beckers, Jose
Maria Bermudo Mera, and Ingrid Verbauwhede. Side-channel analysis of lattice-
based post-quantum cryptography: Exploiting polynomial multiplication. ACM
Trans. Embed. Comput. Syst., Nov 2022.

28. Kalle Ngo, Ruize Wang, Elena Dubrova, and Nils Paulsrud. Side-channel attacks on
lattice-based kems are not prevented by higher-order masking. Cryptology ePrint
Archive, Paper 2022/919, 2022. https://eprint.iacr.org/2022/919.

29. Tobias Oder, Tobias Schneider, Thomas Pöppelmann, and Tim Güneysu. Practi-
cal CCA2-secure and masked Ring-LWE implementation. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(1):142–174, 2018.

30. Colin O’Flynn and Zhizhang (David) Chen. ChipWhisperer: An open-source plat-
form for hardware embedded security research. In Emmanuel Prouff, editor, Con-
structive Side-Channel Analysis and Secure Design - 5th International Workshop,
COSADE 2014, Paris, France, April 13-15, 2014. Revised Selected Papers, volume
8622 of Lecture Notes in Computer Science, pages 243–260. Springer, 2014.

31. Peter Pessl and Robert Primas. More practical single-trace attacks on the number
theoretic transform. In Peter Schwabe and Nicolas Thériault, editors, Progress in
Cryptology - LATINCRYPT 2019 - 6th International Conference on Cryptology
and Information Security in Latin America, Santiago de Chile, Chile, October 2-
4, 2019, Proceedings, volume 11774 of Lecture Notes in Computer Science, pages
130–149. Springer, 2019.

32. Robert Primas, Peter Pessl, and Stefan Mangard. Single-trace side-channel attacks
on masked lattice-based encryption. In Wieland Fischer and Naofumi Homma, ed-
itors, Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th Inter-
national Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, volume
10529 of Lecture Notes in Computer Science, pages 513–533. Springer, 2017.

33. Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin.
Generic side-channel attacks on cca-secure lattice-based PKE and kems. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):307–335, 2020.

34. Oscar Reparaz, Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren, and In-
grid Verbauwhede. Additively homomorphic ring-lwe masking. In Tsuyoshi Takagi,
editor, Post-Quantum Cryptography, pages 233–244, Cham, 2016. Springer Inter-
national Publishing.

35. Oscar Reparaz, Sujoy Sinha Roy, Ruan de Clercq, Frederik Vercauteren, and Ingrid
Verbauwhede. Masking ring-lwe. J. Cryptogr. Eng., 6(2):139–153, 2016.

36. Gregor Seiler. Faster AVX2 optimized NTT multiplication for Ring-LWE lattice
cryptography. IACR Cryptol. ePrint Arch., page 39, 2018.

37. Jian Wang, Weiqiong Cao, Hua Chen, and Haoyuan Li. Practical side-channel
attack on masked message encoding in latticed-based kem. Cryptology ePrint
Archive, Paper 2022/859, 2022. https://eprint.iacr.org/2022/859.

38. Ruize Wang, Martin Brisfors, and Elena Dubrova. A side-channel attack on a bit-
sliced higher-order masked crystals-kyber implementation. IACR Cryptol. ePrint
Arch., page 1042, 2023.

39. Yufei Xing and Shuguo Li. A compact hardware implementation of cca-secure
key exchange mechanism CRYSTALS-Kyber on FPGA. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 2021(2):328–356, Feb. 2021.

https://eprint.iacr.org/2022/919
https://eprint.iacr.org/2022/859

24 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

Alg. 3: Kyber-PKE Encryption (simplified)

1 Public key pk = (̂t, ρ), message m, seed τ Output: Ciphertext c

2 Â ∈ Rk×k
q ← SampleU (ρ);

3 r, e1 ∈ Rk
q , e2 ∈ Rq ← SampleB(τ);

4 b← NTT−1(ÂT ◦ NTT(r)) + e1;

5 v ← NTT−1 (̂tT ◦ NTT(r)) + e2 + Encode(m);
6 c1, c2 ← Compress(b, v);
7 c = (c1, c2);
8 return c;

Alg. 4: Kyber-CCA2-KEM Encryption (simplified)

1 Public key pk = (̂t, ρ) Output: Ciphertext c, shared key K
2 Choose uniform m;

3 (K̄, τ)← H(m||H(pk));
4 c← PKE.Enc(pk,m, τ);

5 K ← KDF(K̄||H(c));
6 return c,K;

40. Bolin Yang, Prasanna Ravi, Fan Zhang, Ao Shen, and Shivam Bhasin. STAMP-
single trace attack on M-LWE pointwise multiplication in Kyber. Cryptology
ePrint Archive, Paper 2023/1184, 2023. https://eprint.iacr.org/2023/1184.

41. Timo Zijlstra, Karim Bigou, and Arnaud Tisserand. FPGA implementation and
comparison of protections against SCAs for RLWE. In Feng Hao, Sushmita Ruj,
and Sourav Sen Gupta, editors, Progress in Cryptology – INDOCRYPT 2019, pages
535–555, Cham, 2019. Springer International Publishing.

A Kyber algorithms

Algorithms 3 and 4 describe the encryption and encapsulation functions in Ky-
ber. The functions Compress and Decompress are defined as Compress(u) :=
⌊u · 2d/q⌉ mod (2)d and Decompress := ⌊q/2d · u⌉, with d = 10 if k = 2 or
3 and d = 11 if k = 4. Note that the output of the encryption corresponds to
a ciphertext c, which consists of two compressed ciphertexts. This ciphertext c
will be the input to the decapsulation algorithm.

B Montgomery reduction

Kyber represents elements in Montgomery representation in order to avoid ex-
pensive division by q and computation mod q and replace it by division by 216

(taking the top half of a register) and computation mod 216 (taking the bottom
half of a register). In the following, we present the Montgomery reduction with
general R and q, but Kyber indeed uses R = 216.Consider R = 2k > q, and an
element a < qR. To reduce the memory footprint, we can store a/R and this
reduces the element a by k bits, and it can be efficiently implemented. In the
Montgomery domain, the idea is to make sure that the element a is a multiple

https://eprint.iacr.org/2023/1184

Breaking DPA-protected Kyber via the pair-pointwise multiplication 25

Alg. 5: Montgomery reduction

1 modulus q, R = 2n > q, q−1 mod (R), a ∈ Z such that a < qR Output: t ≡ aR−1

(mod q), 0 ≤ t ≤ 2sq

2 t← a(−q−1) mod (R);
3 t← (a+ tq)/R;
4 s return t;

Alg. 6: Signed Montgomery reduction from [36]

1 modulus q, R = 2n > q, q−1 mod± (R), a ∈ Z such that a < qR Output: t ≡ aR−1

(mod q), |t| ≤ q
2 t← aq−1 mod± (R);
3 t← (tq)/R;
4 t← ⌊a/R⌋ − t;
5 return t;

of R by introducing a correction step. More precisely, imagine that we want to
find a value t, such that a − tq is divisible by R. To bring the element to the
Montgomery domain, one computes t as aq−1 (mod R) in a way that a− aq−1q
(mod R) = 0. Following closely Section 2.3.2 in [23], Algorithm 6 shows the case
of signed Montgomery reduction from [36].

We now provide more details on how we determined the length of values for
the Hamming weight that we use in our numerical estimates in Section 4.2:

1. a1 · b1 12 + 12 = 24 bits
take bottom of register 16 bits
then multiply by qinv |qinv| = 12 bits

2. (a1 · b1)B · qinv 16 + 12 = 28 bits
take bottom of register 16 bits
then multiply by q |q| = 12 bits

3. ((a1 · b1)B · qinv)B · q 16 + 12 = 28 bits
add (a1 · b1) |a1 · b1| = 24 bits

4. ((a1 · b1)B · qinv)B + (a1 · b1) max{24, 48} = 28 bits
take top of register and call it c |c| = 12 bits

5. c · ζ 12 + 12 = 28 bits

C Details on noiseless and noisy simulations

We now discuss our simulations for noiseless operations within the pair-point
multiplications comprehensively and additionally explain how we calculated prob-
abilities in our noisy simulations. We first focus on the first 5 instructions of the
pair-point multiplication, cf. Section 4.2. Our simulations calculate which coeffi-
cients a2i+1 ∈ [0, . . . , q− 1] have unique combinations of hamming weight values
(hamming weight tuples) during these instructions. Recall from Equation 3 that
pair-point multiplication also computes the term a1b1ζ, where the value of ζ
changes for each pair-point multiplication. So for our simulations, we initially
fix ζ0 and try out all possible values for a1 and all possible values b1. We obtain

26 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

the average probability that a value for a1 leads to a unique hamming weight
tuple. Then, we change to ζ1 and iterate over all possible values for a3 and all
possible values for b3. We continue this process, obtaining the averages for all
a2i+1, given all ζi. We thus obtain probabilities for extracting each odd coef-
ficient, given a random ciphertext. Observe that in our simulations we do not
consider micro-architectural aspects, like instruction pipelining, of our target.

As we show, most of the values for an odd coefficient indeed lead to unique
hamming weight tuples. Only a small fraction of coefficients have collisions. On
average, 3031 of these values have unique hamming weight tuples, i.e. there ex-
ist 3031 hamming weight tuples which map to exactly one coefficient value. 259
coefficients lead to 2-way collisions. This means that there exist 259/2 ≈ 130
hamming weight tuples which map to exactly two different coefficient values.
Subsequently, there exist 34 coefficients which have 3-way collisions and 4 coeffi-
cients which have 4-way collisions each. On the average only a 0.03125 fraction of
tuples maps to more than 4 different coefficient values. We now provide further
details about the results of our simulations.

Extracting odd coefficients (a2i+1). Our simulations show that for a uniformly
random b2i+1, the probability of extracting a2i+1 from the first 5 instruction
is ≈ 0.90. This means that given a random ciphertext, we have good chances
of extracting each odd coefficient. The probability of obtaining two possible
candidates for each odd coefficient is ≈ 0.085, and the probability of obtaining
three possible candidates for each odd coefficient is ≈ 0.011. Thus, taking a union
bound, we obtain that the probability that a given a2i+1 has either a unique
hamming weight tuple, or a 2- or 3-way collision is ≈ 0.996. For this reason
in the rest of this analysis we only consider the case that we are dealing with
coefficients with unique hamming weight tuples, or with 2- or 3-way collisions.

In the table under Number of Matches (1), we see the probability that
each odd coefficient a1, a3, ..., a255 has a unique hamming weight tuple. We cal-
culate this probability over all b1 ∈ [1, . . . , q−1], and note that the probability is
dependent on the value of ζ. Thus, the probability that a1 has a unique hamming
weight tuple is different from that of a3, a5, etc, but the probability is always
between 0.801 and 0.937, with an average of 0.90. Under Number of Matches
(2) and (3), we see the analogous probabilities that each odd coefficient a2i+1

has a hamming weight tuple with a 2- and 3-way collision correspondingly.

We recall that in our attack using q+ q templates (cf Subsection 3.1), we use
the first set of q templates for extracting the odd coefficients. According to our
results, we should have a 90% chance of correctly extracting each odd coefficient
- but we should recall that in Kyber, the secret keys consist of polynomials
of degree 255. Thus, the probability of extracting all odd coefficients correctly
is notably smaller. In fact, if we consider all probabilities of Figure 5 for the
chances that each odd coefficient has a unique hamming weight tuple, we obtain
a probability of Π127

i=0pi ≈ 1.2967 × 10−6 of extracting all odd coefficients from
one polynomial, given only q templates. We will explain later in this section how
we can use the results of our simulations to outline an attack strategy that easily

Breaking DPA-protected Kyber via the pair-pointwise multiplication 27

increases our success probabilities, with just a linear increase in the number of
templates needed.

Extracting coefficient pairs (a2i, a2i+1). The lower part of Figure 5 gives the
probabilities that each secret coefficient pair leads to a unique hamming weight

Nr. of templates Root Number of Matches
1 2 3

q-templates

ζ0 2226 0.8696 0.108 0.018
ζ1 −2226 0.9344 0.0603 0.0042
ζ2 430 0.8688 0.1087 0.0178
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

ζ126 1628 0.8715 0.1067 0.0173
ζ127 −1628 0.9329 0.0615 0.0044

q2-templates
ζ0 2226 0.9974 0.0025 1.01× 10−5

ζ1 −2226 0.9973 0.0026 7.1474× 10−6

ζ2 430 0.9978 0.0021 4.6282× 10−6

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
ζ126 1628 0.9973 0.0027 7.4805× 10−6

ζ127 −1628 0.9976 0.0024 5.5263× 10−6

Fig. 5: Number of Matches: given ζi, probability of
a 1-, 2- or 3-way collision. Upper part: the prob-
ability of extracting odd coefficients with q tem-
plates. Lower part: probability of extracting pairs
of coefficients with q2 templates.

tuple. We obtain these prob-
abilities in an analogous way
as for the odd coefficients.
Thus, the probabilities for
each pair (a0, a1), (a2, a3),
(a4, a5), . . . , (a254, a255) are
different as they are depen-
dent on ζ. Note that in this
case, the hamming weight
tuples consist of more val-
ues since we are consider-
ing all instructions within
one pair-point multiplica-
tion. Hence, the very high
probabilities under Num-
ber of Matches (1). We
can conclude from these re-
sults that if we create tem-
plates for all possible pairs
of secret coefficients, our
success probabilities are fairly high, while, on the other hand, it also requires
creating a total of q2 templates.

Efficiency Optimizations. While q2 is a reasonable number of template traces,
collecting all of them is still quite consuming. Thus, we may indeed try extract-
ing all odd coefficients first and then extracting all even coefficients with an
additional set of templates. From the discussions above, we can conclude that
our success probabilities of running a q + q attack are not as high as we would
originally hope (for the mkm4 implementation in the Hamming weight model).
However, the simulation results suggest a natural and very simple way of opti-
mizing the success of the attack. In the following, we outline an attack adaptation
that increases the success probability of our attack and only requires a linear
increase in the number of templates.

First, we can perform a template matching using q templates (as originally
done in Subsection 3.1). For each coefficient we are trying to extract, we rank
the top 3 candidate values for which we get the best matches. Now, we build
templates for extracting the even coefficients. We will create 3 versions of these
templates. In each version, we use a different top 3 candidate for each odd
coefficient, creating an additional set of 3q templates. Thus, we first determine
the top three candidates for each a2i+1 (with high probability) and then try all
three of them in combination with all possible a2i, leading to an overall number
of q + 3q templates. When trying to extract the even coefficients, we get a very

28 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

templates σ Probability of being amongst top .. matches
1 2 3

q-templates

0.3 0.8915 0.9775 0.9936
0.4 0.7851 0.9205 0.9617
0.5 0.6530 0.8231 0.8948
0.6 0.5291 0.7027 0.7911
0.7 0.4214 0.5860 0.6775

q2-templates

0.5 0.9336 0.9788 0.9890
0.6 0.8234 0.9112 0.9415
0.7 0.6707 0.7906 0.8419
0.8 0.4998 0.6310 0.7027
0.9 0.3697 0.4839 0.5517
1.0 0.2581 0.3559 0.4135

Table 1: Simulation results for noisy traces.

high success rate iff we are using the correct odd coefficient a2i+1. Namely, as
we see in Figure 5, each secret coefficient pair has a very high probability of
having a unique hamming weight tuple.

We can even optimize our attack further by considering the top 4 match
candidates for each coefficient, generating an additional set of 4q templates.
Concretely for the optimized attacks using q+3q and q+4q templates, we obtain
success probabilities of Π127

i=0pi ≈ 0.6755 and Π127
i=0pi ≈ 0.875, respectively.

With 6q = 19974 templates, we have a very high success probability of 0.944,
given a single target trace and a random ciphertext. Subsequently, we can use
our analysis of the coefficients to determine the (expected) ≈ 0.875 fraction
of coefficients that are unique, given our list of coefficients that have a unique
Hamming weight pattern. For the remaining ≈ 0.125 coefficients, brute-forcing
over 40.125·128 = 232 coefficients is feasible.

Noise. We now add Gaussian noise with standard deviation σ to the target
trace and see for which σ we can still extract one or both coefficients. Instead
of searching for perfect matchings, we minimize the L2-norm of the differences
between the simulated target trace and the template. Unfortunately, even for the
q2 attack, the best match under the L2 norms provides the correct (a2i, a2i+1)
value with probability ≤ 0.5 when σ ≥ 0.8. All probabilities are calculated via
10,000 samples and using a random root out of all possible 128 roots.

D Comparison

To the best of our knowledge, there exist two other works in the literature that
target polynomial multiplication in Kyber. In [27], the authors present a CPA
attack on an unprotected polynomial multiplication implementation of Kyber.
This attack led to the extraction of the long-term secret using approximately
200 traces. The main difference in comparison to our work is that the attack [27]
requires multiple target traces and thus is not successful in the presence of a
masking countermeasure. Our attack, on the other hand, requires a single tar-
get trace and, therefore, can successfully target masked implementations. The
drawback of our approach is that we consider an adversary who can build tem-

Breaking DPA-protected Kyber via the pair-pointwise multiplication 29

Fig. 6: Noisy q + q attack simulations.

Fig. 7: Noisy q2 attack simulations.

plate traces using a profiling device on which the secret can be freely changed.
A classic CPA attack, as presented in [27], does not require any such profiling.

Another related work [40] presents a single-trace template attack on the
polynomial multiplication of an unmasked implementation pqm4 [1] during key
generation 9. There are several differences between this work and ours. First,
note that they did not attack any masked implementation, but only argue about
the attack’s applicability to masking schemes since it attacks single traces. The
attack is performed against a non-optimized implementation, utilizing straight-
forward polynomial multiplication without Karatsuba, leading to each secret
coefficient being loaded twice, while our attack is on the mkm4 masked imple-
mentation, which accesses the secret only once. Second, the attack [40] cannot
be replicated on decapsulation since their template requires the leakage from the
multiplication of k different polynomial values in the matrix A — which happens

9 They also attack a reference implementation, but we do not concentrate on that since
this implementation leaks much more than pqm4 and the attacked by us mkm4. We
are only looking at the long-term secret key and we do not consider the attacks on
the encryption procedure.

30 Alpirez Bock, Banegas, Brzuska, Chmielewski, Puniamurthy, Šorf

Table 2: Comparison of attacks on the long-term secret key from the polynomial
multiplications; the analysis is made for Kyber768 unless stated otherwise.
Work Implementation No. of target

traces
No. of templates Target algorithm Remaining Brute-

Force

[27] Non-masked pqm4 200 0 Decapsulation No

[40] Non-masked refer-
ence and pqm4 im-
plementations

1 Not provided, estimation:
7 000 or 896 000

Key generation For pqm4 Kyber:
512 – infeasible; 768
– 240; 1024 – 25.

This work
(Simulation)

Optimized masked
mkm4 imp.

1

6 628 (q + q attack), or
11 082 241 (q2 attack)

Key generation and
Decapsulation

No
This work
(Experiment)

q2+OTA attack: 78M (43%
SR) or 105M (90% SR)

in the key generation. On the other hand, our attack can be applied to the key
generation by utilizing the public polynomial values in A. Finally, their attack
does not recover the full secret, but employs an extra key enumeration to finish
the attack; as a result, their attack works for Kyber768 and Kyber1024, but not
for Kyber512. Precise performance comparison is challenging due to uncertain-
ties about the number of required templates in [40]. The authors mention using
500 traces to build templates for each intermediate, with approximately 14 at-
tacked intermediates in each multiplication. This means that their attack would
require only 7 000 templates if one template can be created for all pairwise mul-
tiplications or 896 000 if each multiplication needs to be templated separately.
Consequently, it seems that the attack [40] requires fewer template traces for pro-
filing than our approach, albeit with increased complexity and a lower success
rate, necessitating final key enumeration.

Comparing our approach with [40] is intricate due to the mentioned differ-
ences. Foremost, [40] attacks key generation of the unprotected implementation,
which involves a broader range of secret-dependent operations than our target.
Therefore, we cannot estimate how well the attack from [40] would work against
protected implementation like mkm4. In summary, the attack in [40] has ad-
vantages as it exploits various leaks and capitalizes on them. However, it is not
easy to adapt to other procedures, such as the technique presented in this paper.
Thus, this makes our attack more generic than the one presented in [40].

In Table 2, we give a summary of the comparison with [27] and [40]. From
our work, we present the two versions, i.e., “Simulation” refers to the numbers
of the original introduction of our attack described in Section 3 and concerning
the results obtained via simulations in Section 4. The “Experiment” work refers
to the real-world attack from Section 5, where 78M traces give a 43% success
of extracting the secret key, while 105M traces give over 90% success rate.

	Breaking DPA-protected Kyber via the pair-pointwise multiplication

