

Selected constructive and destructive approaches to post-
quantum cryptography
Citation for published version (APA):
Souza Banegas, G. (2019). Selected constructive and destructive approaches to post-quantum cryptography.
[Phd Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische
Universiteit Eindhoven.

Document status and date:
Published: 12/11/2019

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 03. Apr. 2023

https://research.tue.nl/en/publications/f2548d77-0eb7-4436-842c-99bd9c13364f

Selected Constructive and Destructive
Approaches to Post-Quantum

Cryptography

Gustavo Banegas

Copyright © Gustavo Banegas
E-mail: gustavo@cryptme.in
Website: www.cryptme.in

First edition October 2019

This research is supported by the European Union’s Horizon 2020 research and innova-
tion programme under the Marie Skłodowska-Curie grant agreement No. 643161.

Printed by Printservice Technische Universiteit Eindhoven

A catalogue record is available from the Eindhoven University of Technology Library.

ISBN: 978-90-386-4890-3.

The cover illustrates random waves over binary fields by Liana Clara Pra Baldi da Silveira.
Printed with permission of Liana Clara Pra Baldi da Silveira.

Selected constructive and destructive approaches

to Post-Quantum Cryptography

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven,
op gezag van de rector magnificus prof.dr.ir. F. P. T. Baaijens, voor een commissie

aangewezen door het College voor Promoties, in het openbaar te verdedigen
op dinsdag 12 november 2019 om 16:00

door

Gustavo Souza Banegas

geboren te Panambi, Brazilië

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de promotie-
commissie is als volgt:

voorzitter: prof. dr. ir. O. J. Boxma
1e promotor: prof. dr. T. Lange
2e promotor: prof. dr. D. J. Bernstein
leden: prof. dr. H. Buhrman (Universiteit van Amsterdam)

prof. dr. T. Johansson (Lunds Universitet)
prof. dr. A. May (Ruhr-Universität Bochum)
dr. P. Schwabe (Radboud Universiteit)
dr. B. M. M. de Weger

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd in
overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

Acknowledgments

In my quest to obtain a Ph.D., I have met outstanding people that helped me to develop
my knowledge. For this, I am really glad. In a few words, I will try to acknowledge them.

First, I need to say that I did not expect that in my time as a Ph.D. student I was going
to acquire such a large cultural, emotional and scientific experience as I received.

I would like to start by saying thank you to my supervisors for helping me to achieve
my goal, that is, finishing my Ph.D. I would like to thank my math and chili mom Tanja
for always helping me with math in special proofs and writing style, for being really,
really patient with me, for giving me chocolate muffins, spicy muffins, introducing me
to vegetarian Mapo tofu extra spicy, for chili seeds and of course warning me that when
I am in Florida or other US cities that I should not trespass since they will not ask in a
polite way for me to get out of their property. Furthermore, I would like to thank you,
Dan, for teaching me a lot about coding, quantum computing, math, how to write papers,
and to make jokes during talks. I learned a lot with this and I enjoyed a lot to go to the
talks because of the content and most importantly the jokes. I thank you both for the
opportunity to do my Ph.D. and for all the knowledge that I have acquired in the 4 years
that I was your Ph.D. student and the places that I have seen in the world that I have
never imagined that one day I would be. I would like to thank both for the guidance
during my Ph.D. and to say that if I pursue an academic life they are the major reason for
this, I will carry forever with me the values, thoughts, and the love about research and of
course the love about math and cryptography.

Secondly, I would like to thank my committee Harry Buhrman, Thomas Johansson,
Alex May, Benne de Weger and Peter Schwabe for taking the time to read this thesis and
to travel to Eindhoven. I would like extend to an extra thanks to Peter Schwabe. I met
you because I was a curious student asking how it was possible to implement securely in
Java Cards, after a brief discussion on Skype with Andreas Hülsing, he sent me to talk
with you since you were in the same summer school. Since 2013 our paths have crossed
several times. In 2014 at Latincrypt we met again in Florianópolis and in the same year
you invited me to go to Hamburg to attend CCC. Finally, because of you, I met Dan and
Tanja who in the near future became my supervisors.

I had the opportunity to work with many outstanding researchers during my Ph.D.
and I would like to thank my coauthors which is a big list because of DAGS. I would like
to thank in alphabetic order, all my coauthors which are Paulo S. L. M. Barreto, Daniel J.
Bernstein, Brice Odilon Boidje, Pierre-Louis Cayrel, Ricardo Custódio, Gilbert Ndollane
Dione, Kris Gaj, Cheikh Thiécoumba Gueye, Richard Haeussler, Jean Belo Klamti, Douglas
Martins, Ousmane N’diaye, Duc Tri Nguyen, Daniel Panario, Edoardo Persichetti, Jeffer-

son E. Ricardini, Simona Samardjiska and Paolo Santini. I would like to say that I am
very happy to be part of the Italian mob that Edoardo and Paolo made me part of and for
the invitations from Edoardo to go to Florida.

I am grateful for the amazing friends that I made during my stay in Eindhoven, I would
say that you were really great and that you made my life easier and funny in Eindhoven.
In no special order I would like to thank: Andy, Christine, Stefan, Anita, Sober Ale, Drunk
Ale, Bouke, Mahdi, Meilof, Franscisco, Rien, Daan, Davide, Ömer, Manos, Taras, Sownya,
Murtaza, Pavlo, Dominik, Iggy, Leon, Lorenz, Chloe, Benjamin, Estuardo, Dion, Laura,
Niels, Frank, Maran, Manon, (right) Joost, (wrong) Joost, Pedro, Veelasha, Ko, Niels,
Matthias, Ruben, Tony, Chitchanok, Thijs, Kai-Chun, Jake and Florian. I would like to
extend my many thanks to the other ECRYPT-NET Ph.D. students.

I would like to say thanks to the “Brazilian Storm” and that includes the “gang" from
Brazil that helped me and some of which are my coauthors such as Paulo, Jefferson,
Douglas and Ricardo, others are cryptography-related friends such as Pedro, Amanda,
Thales, Diego, Rafael, Fábio, Lucas, and Gustavo. Moreover, I have friends that stayed in
Brazil but maintain contact with me and that includes my former research group LabSEC
and my rugby team Goitaka Rugby, I would like to say a special thanks to Felipe for sharing
memes, videos, and jokes that made my days more enjoyable and his lovely wife Soraya.
I would like to thank Wei Chi, my ninjutsu group in Brazil, especially my sensei Rodrigo.
In addition, I would like to say thanks to Liana to be like a sister since 2005 and even
with the distance every time that we meet it is like we have not seen each other for one
week. At last but not least, I would like to thank Monica for sharing laughs about the
similar problems of Ph.D. life even though we are from different areas.

I had several “homes” along my PhD. The first one, the coding and cryptography group
in Eindhoven which I am really greatful to spend most of my time here. The second, I
went to a internship at Riscure in Delft and I would like to thank them for receiving
me, especially Ileana Buhan and Lukasz Chmielewski. The third, I would like to thank
CryptoExperts from Paris for the warm welcome, I had a great time with them and I
learned a lot with Sonia Belaïd, Matthieu Rivain, Pascal Pailler, Louis Goubin and Junwei
Wang. I would like to extend an extra thanks to Mélissa Rossi for helping me in Paris and
for several conferences that we have been together.

There is a special place for the ones that paid me beers during my stay in Eindhoven
and the responsibles are: Christine, Stefan, Andy, Lorenz and Daan. I am really grate-
ful for all the Fridays at GEWIS, the trips, the parties, the conferences, the conference
dinners, the bachelor party, the wakeboarding, the BBQs, and I could write much more
occasions that we spend quality time together but I will stop here and just say thank you
so much for all the beers.

I will thank Andy for being like a brother, we have been in several trips for work
and for surfing. We were surfing side by side in several places that when I was younger
I could not imagine that one day I was going to be surfing there, places like Portugal,
Canary Islands, California and Netherlands. I am glad that I was surfing in these places
with you. I think that my acknowledgements would not be complete if I forgot about the
several punk rock festivals that we went to see NOFX, Rancid and other amazing bands.

I would like to thank my mom, my brother and my wife for supporting my decision
to move out of my home country. Especially, I would like to thank my mom for always
finding a way and send Brazilian food such as Pão de queijo and Pinhão. To my brother,
I would like to say: “Haha! I got my Ph.D. younger than you!” and thank you for coming

to visit me in Europe and for bringing my Jiujitsu gi. I would say that without this support
I think that I could not finish my PhD.

At last but not least, I would like to say thanks to Carolina, my wife. You have been
at my side since I decided to start the academic life that is since I started my master’s and
always helped me when I was in doubt of myself. We have been together for more than 7
years, you are the reason for my first transatlantic travel when during winter, we went to
Budapest for volunteer work and since then we always keep traveling together. When I
decided to come to the Netherlands for my Ph.D. even knowing that we would be far apart
for a time, you supported me and then one day you said that you were quitting your job,
selling everything and moving here to do another master’s and to be together with me,
that is just one of the reasons that I admire you. I would say that you have been my friend,
my lover, my inspiration, my sanity and my spellchecker for English and Portuguese. I
would say that words cannot express the joy, the happiness and the determination that
you always bring to me.

I would like to finish my acknowledgments with a phrase from Invictus from William
Ernest Henley that I have as a motto since I read long it time ago.

“I am the master of my fate, I am the captain of my soul.” (William Ernest
Henley, 1888)

Gothenburg, September 2019

Gustavo Banegas

Contents

1 Introduction 1

I Code-Based Cryptography 5

2 Background on Code-Based Cryptography 7
2.1 Mathematical Background . 7
2.2 Coding Theory . 10

3 Fast Multiplication and Inversion in Dyadic Matrices 25
3.1 Standard Multiplication . 25
3.2 Dyadic Convolution . 26
3.3 Karatsuba Multiplication . 29
3.4 Comparisons . 30
3.5 Efficient Inversion of Dyadic and Quasi-Dyadic Matrices 31

4 DAGS: Key Encapsulation from Dyadic Generalized Srivastava Codes 37
4.1 Protocol Specification . 38
4.2 Known Attacks and Parameters . 41
4.3 Implementation and Performance Analysis 48
4.4 Advantages and Limitations . 54
4.5 SimpleDAGS . 56
4.6 Improved Resistance . 59
4.7 Revised Implementation Results . 62

5 Root Finding over F2m 63
5.1 BIGQUAKE Key Encapsulation Mechanism & Attack 64
5.2 Root Finding Methods . 68
5.3 Comparison . 75

6 A Reaction Attack on LRPC Codes 79
6.1 A Reaction Attack . 80
6.2 Equivalent Keys in LRPC Cryptosystems 84
6.3 Equivalent Key Attack on Quasi-Cyclic H 87
6.4 Case Study: McNie . 88

II Quantum Cryptanalysis 91

7 Background on Quantum Cryptanalysis 93
7.1 Quantum Computation . 93
7.2 Quantum Circuits . 94
7.3 Grover’s Algorithm . 96

8 AES in a Quantum Computer 99
8.1 The AES Block Cipher . 99
8.2 Background on the Quantum Languages 101
8.3 Improved AES Implementation . 103

9 Grover’s Algorithm and Preimage Search 109
9.1 Introduction . 109
9.2 Reversible Computation . 111
9.3 Reversible Iteration . 113
9.4 Reversible Distinguished Points . 114
9.5 Sorting on a Mesh Network . 115
9.6 Multi-target Preimages . 116

Summary 117

Curriculum Vitae 119

Bibliography 121

Chapter 1

Introduction

Humans are not machines, and so it was that long before our modern era, people with
communication security needs used codes and ciphers which were labor intensive for peo-
ple. A classic example is the Caesar cipher named after Julius Caesar [Sin00]. As is often
the case, and like Caesar, the original Caesar cipher falls to Brutus [Str15]. While many
humans may be flummoxed by trying many different combinations, a machine excels at
such tedious work. Classical ciphers such as the Caesar cipher would do little to no good
in our digital era, and certainly we require methods which relate to the current threats.
The Caesar cipher’s threats were the mail carrier, or a courier, or perhaps a spy, where
even to copy the message encrypted with an unknown system, was labor intensive. Times
have changed, though many of the concerns about spies [Orw83] have stayed largely the
same. It is the methods for copying messages and the methods for protecting messages
which have undergone a monumental shift.

In our current digital era, our communications channels are no longer the human
couriers on horseback, regular people deal with larger volumes of messages on a daily
basis. It is for this reason, amongst others, that radically different protection schemes
are often used to protect data as it travels around the world at the speed of light. When
messages need to be protected, we utilize cryptography. When information needs to be
hidden, we utilize modern information hiding techniques such as steganography. Even if
we were to find ourselves in an Orwellian nightmare [Orw83], cryptography would help
to protect messages but as the lessons of Caesar illustrate: cryptography is necessary but
considered alone it may not be sufficient. None the less, if cryptography is necessary,
what would it entail if one needed it to be done correctly? Modern cryptography re-
lies on mathematical problems, it requires efficient and secure constructions, not merely
problems that would stump a horse back rider on their break between cities. Whereas the
original Caesar cipher would substitute each letter with another, requiring the communi-
cating parties to agree on a substitution pattern before a message could be understood,
modern cryptography allows two strangers to speak privately without any previous coor-
dination.

The mathematical problems that are used in cryptography are selected to ensure that
they are efficient for those who are allowed to decode messages, and inefficient for those
who are not. For example, Rivest, Shamir, and Adleman created a scheme by the name of
RSA [RSA78]. This cryptographic scheme is based on factoring numbers that are products

2 CHAPTER 1. INTRODUCTION

of two primes. At first glance, it seems trivial to solve this problem. If one selects two
prime numbers with 2048 bits each, it is even hard to recover the original numbers from
the multiplication.

As was previously foreshadowed, things which are hard for humans are sometimes
easier for computers. So it is that things difficult for today’s computers are likely to be
much easier with tomorrow’s computers. Not just any computer: the game changes when
an attacker has a quantum computer. As early as the 1990s Shor [Sho97] presented an
algorithm to take advantage of quantum computation and showed a fast method to factor
the product of two primes. This algorithm is much faster than the ones used in classical
computers. The consequence of this quantum algorithm is that it breaks cryptographic
schemes such as RSA, DSA, and ECDSA. The imminent problem of the break of those
cryptosystems is that they are the ones deployed in most of the software and hardware
of the modern world’s electronic devices. Fortunately, there are some solutions for this
problem, that is, post-quantum cryptography.

Post-quantum cryptography is the study of mathematical problems that are believed
to be hard to solve with a quantum computer. Nowadays, we have five large areas of
mathematics relevant to this problem space, namely, lattices, hash, multivariate quadratic
equations, isogenies and codes. The latter is based on linear codes and the first scheme
proposed was by McEliece [McE78] in 1978. As is shown in the implementation provided
in [BCL+], the scheme is fast and secure but it requires the use of very large public
keys. However, there are researchers trying to keep the security and efficiency of this
scheme while reducing the size of the keys. In the original proposal, McEliece presents
the scheme using Goppa codes. A natural idea is to study the behavior of the scheme when
a different code is used. If the keys are reduced, will the scheme continue to provide the
same security? One of the first solutions to this question is presented in [MB09,MTSB13]
where the authors try to make a compact version of McEliece.

In this thesis, the first part is the explanation of cryptography based on linear codes.
Chapter 2 gives the mathematical background necessary to understand the first part of the
thesis. In this chapter, there are the definition of dyadic matrices, linear codes and a brief
explanation of two cryptosystems based on codes, namely, McEliece and Niederreiter.
Chapter 3 continues in the mathematical area and it shows how it is possible to perform
multiplication and inversion in an efficient way. Chapter 4 joins the previous chapters
and shows that is possible to create a cryptosystem using Generalized Srivastava [Hel72]
codes; this cryptosystem is believed to be secure against quantum computers. Further-
more, the chapter details the implementation of this cryptosystem.

The implementation of a cryptosystem is an important step in the deployment of the
cryptosystem. It can determine the efficiency of the operations and the security of the
scheme. The latter is related to side-channel attacks, and of course, human mistakes.
Chapter 5 exploits a type of side-channel attack, i.e., it takes advantage of the leakage of
time in certain operations to recover secret information. Later on, the chapter proposes
a countermeasure to avoid timing attacks, it shows how to find roots of an error locator
polynomial (ELP) avoiding timing leakages.

Another way to attack a cryptosystem is using a reaction attack. A reaction attack
consists of sending several messages and waiting for a message that cannot be decoded.
When such a message is found, we exploit properties of the failure. In [GJS16], the au-
thors propose a reaction attack against Moderate Density Parity-Check Codes. Chapter 6
proposes a similar attack but the main focus is on Low-Rank Parity-Check (LRPC) codes.

3

In this chapter, there is an attack that exploits the decoding failure rate, which is an in-
herent feature of these codes, to devise a reaction attack aimed at recovering the private
key. Furthermore, it shows that the same technique can be applied in a quantum setting,
i.e., it is possible to apply Grover’s algorithm [Gro96] to speed up the attack.

Post-quantum cryptography is not limited to the creation of cryptographic schemes;
it is also the study of breaking cryptography using quantum algorithms. This branch of
research is often called quantum cryptanalysis. In this field, researchers are developing
new quantum algorithms for breaking cryptography, tuning the current quantum algo-
rithms to improve on various aspects of attacks, and estimating the amount of resources
that is required to run a given quantum algorithm.

The second part of this thesis is focused on quantum cryptanalysis. Chapter 7 gives an
introduction about quantum computing and its limitations. In this chapter, the basics of
quantum computation are shown, and an explanation of Grover’s algorithm is presented.
Chapter 8 shows how it is possible to create a quantum circuit for the Advanced En-
cryption Standard (AES). This chapter shows a construction of the S-Box that uses fewer
quantum gates than is found in the literature.

In the final chapter, Chapter 9, the thesis shows a new quantum algorithm that uses
a combination of distinguished points and Grover’s algorithm for finding preimages in
a hash function. The complexity of the creation of these quantum circuits is that the
computation needs to be reversible. This requirement demands a more careful design
of the circuit. Another feature of the algorithm presented is that it is designed to run in
parallel.

PART I

CODE-BASED CRYPTOGRAPHY

Chapter 2

Background on Code-Based
Cryptography

2.1 — Mathematical Background

In this chapter, we will explain the main components of Srivastava codes, Goppa codes
and the McEliece cryptosystem. First, we will introduce dyadic matrices and their defini-
tions since we will later use these to build a cryptosystem using Srivastava codes, built on
these matrices. Second, we will give a brief explanation of Goppa codes and the McEliece
cryptosystem.

2.1.1 – Dyadic Matrices.

Definition 2.1. Given a ring R and a vector h = (h0,h1, . . . ,hn−1) ∈ Rn, with n = 2r

for some r ∈ N, the dyadic matrix∆(h) ∈ Rn×n is the symmetric matrix with components
∆ij = hi⊕j where⊕ stands for bitwise exclusive-or on the binary representations of i and
j and i ⊕ j is seen as an integer in [0,n − 1]. Such a matrix is said to have order r. The
vector h is called the signature of the matrix ∆(h), and corresponds to its first row. The
set of dyadic n× n matrices over R is denoted ∆ (Rn).

As a toy example, let us consider the signature h = (a,b, c,d); the corresponding
dyadic matrix is:

M =


h[0,0]⊕[0,0] h[0,0]⊕[0,1] h[0,0]⊕[1,0] h[0,0]⊕[1,1]

h[0,1]⊕[0,0] h[0,1]⊕[0,1] h[0,1]⊕[1,0] h[0,1]⊕[1,1]

h[1,0]⊕[0,0] h[1,0]⊕[0,1] h[1,0]⊕[1,0] h[1,0]⊕[1,1]

h[1,1]⊕[0,0] h[1,1]⊕[0,1] h[1,1]⊕[1,0] h[1,1]⊕[1,1]

 =

=


h[0,0] h[0,1] h[1,0] h[1,1]

h[0,1] h[0,0] h[1,1] h[1,0]

h[1,0] h[1,1] h[0,0] h[0,1]

h[1,1] h[1,0] h[0,1] h[0,0]

 =

8 CHAPTER 2. BACKGROUND ON CODE-BASED CRYPTOGRAPHY

=


h0 h1 h2 h3

h1 h0 h3 h2

h2 h3 h0 h1

h3 h2 h1 h0

 =

=


a b c d
b a d c
c d a b
d c b a

 .

Theorem 2.2. Every dyadic matrix M of order r > 0 can be written in the form

M =

(
A B
B A

)
(2.1)

where A and B are two dyadic matrices of order r − 1. Conversely, every matrix of the
form (2.1) is dyadic.

In other words, ∆ (Rn) = ∆
(
∆
(
Rn/2

)2
)

.

Proof. Base case r = 1, by Definition 2.1 we have that h = (h0,h1), so

∆(h) =
(
h0 h1

h1 h0

)
,

which satisfies the condition. Conversely, a 2 × 2 matrix of the form (2.1) is dyadic by
definition.

The inductive step is to show that the statement holds for r+1 assuming that it holds
for r, i.e. we have dimension 2n.
So, h = (h0, . . . ,hn−1,hn, . . . ,h2n−1) = (h0,h1). We have r + 1 bits as indices. Equa-
tion 2.2 shows the indices in the matrix along the upper left part of the matrix. Note that
those are the indices and not the elements of the matrix.

∆(h) =

0 · · · n− 1 n · · · 2n− 1



0
... ∆(h0) ∆(h1)

n− 1
n
... ∆(h1) ∆(h0)

2n− 1

(2.2)

Since by definition the xor of a number with itself is always 0, the indices on the upper
left and bottom right of Equation 2.2 have that the most significant bit (MSB) will be 0.
Furthermore, xor is commutative so these two n× n matrices are identical. In fact, they
are equal to the dyadic matrix of signature h0 with an additional top bit equal to 0.

Likewise, the MSB of bottom left and upper right matrices will be 1 since one of the
indices will have MSB as 1 in the upper half and the other index will have MSB 0 in the
other half. The matrices are identical and are equal to the dyadic matrix of signature h1,

2.1. MATHEMATICAL BACKGROUND 9

where the MSB of the indices is removed to compute the dyadic matrix and then changed
to MSB equal to 1 to place it in the upper right or bottom left corner. This means that we
can represent the signature with r bits and use the induction hypothesis to show that the
matrix ∆(h) has the form of Equation 2.1.

Conversely, taking A = ∆(h0) and B = ∆(h1) and using the same considerations on
the MSB indices as above shows that M is the dyadic matrix of signature (h0,h1).

Definition 2.3. A dyadic permutation is a dyadic matrix Πi ∈ ∆({0, 1}n) characterized
by the signature πi = (δij | j = 0, . . . ,n− 1), where δij is the Kronecker delta (hence πi

corresponds to the i-th row or column of the identity matrix).

A dyadic permutation is clearly an involution, i.e. (Πi)2 = I. The i-th row, or equiv-
alently the i-th column, of the dyadic matrix defined by a signature h can be written as
∆(h)i = hΠi.

A dyadic matrix can be efficiently represented by its signature; furthermore, all opera-
tions between dyadic matrices can be computed only using the corresponding signatures.
Indeed as we will show below, for any two length-n vectors a, b ∈ Rn, we have:

∆(a) +∆(b) = ∆(a + b) (2.3)

which means that, given two dyadic matrices A and B, with respective signatures a and
b, their sum is the dyadic matrix described by the signature a + b. In an analogous
way, the multiplication between dyadic matrices can be done by considering only the
corresponding signatures, we will discuss efficient ways for computing multiplications in
Section 3. Moreover, it is easy to see that if a dyadic matrix is invertible, its inverse is
also a dyadic matrix; this can be easily computed using Sylvester-Hadamard matrices, see
Section 3.2. We will expand on this in Section 3.5.

Theorem 2.4. Given two dyadic matrices A and B, the sum of A + B = C is a dyadic
matrix.

Proof. Base case: r = 0,n = 20 = 1 and A = (a),B = (b),A+ B = (a+ b).
The inductive step is to show that the statement holds for r+1 assuming that it holds for
r. Assume that, n = 2r+1 = 2 · 2r and Ai,Bi are dyadic of order r, we have:

A =

(
A0 A1

A1 A0

)
, B =

(
B0 B1

B1 B0

)

A + B =

(
A0 + B0 A1 + B1

A1 + B1 A0 + B0

)
by the hypothesis and Theorem 2.2 we have that the conclusion holds.

Theorem 2.5. Given two dyadic matrices A and B, the product of A · B = C is a dyadic
matrix and ∆(a) · ∆(b) = A · B, where a and b are the signatures of matrix A and B,
respectively.

Proof. Base case:
n = 2r, r = 0,n = 1 and A = (a),B = (b),A · B = (ab).

10 CHAPTER 2. BACKGROUND ON CODE-BASED CRYPTOGRAPHY

The inductive step is to show that the statement holds for r+1 assuming that it holds for
r. So, n = 2r+1 = 2 · 2r and Ai,Bi are dyadic of order r, we have:

A =

(
A0 A1

A1 A0

)
, B =

(
B0 B1

B1 B0

)
.

C = A · B =

(
A0B0 +A1B1 A1B0 +A0B1

A1B0 +A0B1 A0B0 +A1B1

)
by the hypothesis, Theorem 2.4 and Theorem 2.2 we have that the conclusion holds.

It is clear that a dyadic matrix is symmetric, which means that MT = M. Another
property is that given a dyadic matrix A, −A = ∆(−a) is a dyadic matrix. Finally, we
will introduce a relaxed notion of dyadicity, which will be useful throughout the thesis.

Definition 2.6. A quasi-dyadic matrix is a (possibly non-dyadic) block matrix whose
blocks are dyadic submatrices, i.e., elements of ∆ (Rn)d1×d2 .

2.2 — Coding Theory

We can say that coding theory started as an engineering problem trying to solve com-
munication problems such as what was the best way for a sender to encode the informa-
tion and send it through a channel. It started with Shannon in the 1940’s and later on it
advanced by Golay and Hamming. Nowadays, we have several ramifications from ways
to encode, decode and verify the data that we want to send through a communication
channel. In this thesis, we are interested in error correction more specifically how we
can apply this to cryptography. The background in coding theory follows closely the PhD
thesis by Persichetti [Per12b].

We start by introducing the notion of linear code.

Definition 2.7. Let Fq be the finite field with q elements. An [n,k] Linear Code C is a
subspace of dimension k of the vector space Fnq .

Elements of the code are called codewords. Each message is represented as a vector
of Fkq and mapped to a unique codeword. The parameter n is the code length, k is the
code dimension and the difference n− k is the redundancy of the code. The redundancy
is added since we are sending information through a noisy channel and we need a way
of verifying if a codeword is correct and if it is not correct of correcting it.

Codes are usually studied in the context of the Hamming metric, determined by the
distance defined below.

Definition 2.8. Let C be an [n,k] linear code over Fq. Let x = (x1, . . . , xn),y =
(y1, . . . ,yn) ∈ C be two codewords. The Hamming Distance dh(x,y) between the code-
words is the number of positions in which they differ, that is

dh(x,y) = #{i : xi 6= yi, 1 6 i 6 n}. (2.4)

Definition 2.9. Let C be an [n,k] linear code over Fq. Let x = (x1, . . . , xn) ∈ C be
a codeword. The Hamming Weight wth(x) of the codeword is the number of non-zero
positions, that is

wth(x) = #{i : xi 6= 0, 1 6 i 6 n}. (2.5)

2.2. CODING THEORY 11

Definition 2.10. Let C be an [n,k] linear code over Fq. The Minimum Distance d of C is
the minimum of the distances among all the codewords, that is

d = min{dh(x,y) : x,y ∈ C, x 6= y}. (2.6)

The minimum distance of a code is important to determine its error-correction capa-
bilities. Consider that a codeword x is transmitted over a noisy channel, and errors occur
in w positions of the codeword. We represent this as an error vector e of weight w and e
has non-zero positions exactly where the errors occur. Instead of receiving the codeword
x, we receive z = x + e. We say that a code C is able to correct w errors if, for each
codeword, it is possible to detect and correct any configuration of w errors.

Theorem 2.11. Let C be an [n,k] linear code over Fq with minimum distance d. Then
C is able to correct up to w = bd−1

2 c errors.

Proof. For every codeword x ∈ C define the sphere of radiusw centered in x as Sx = {z ∈
Fnq : dh(z, x) 6 w}. Now consider two spheres Sx and Sy for x 6= y and let z ∈ Sx ∩ Sy.
Then dh(z, x) 6 w, hence dh(z, x) + dh(z,y) 6 2w and this is a contradiction since,
by triangular inequality, dh(z, x) + dh(z,y) > dh(x,y) > d. This shows that the two
spheres are disjoint; hence, if the error vector added to a codeword has weight 6 w, the
corresponding vector z belongs to a uniquely determined sphere and it is then possible
to recover the codeword by decoding to the center of the sphere.

An efficient way to represent linear codes is using matrices.

Definition 2.12. Let C be an [n,k] linear code over Fq. Let B = {v1, . . . , vk} be a basis
for the vector subspace determined by C. The k× n matrix G having the vectors in B as
rows is called Generator Matrix for C, that is

G =

v1
...
vk

 . (2.7)

The matrixG generates the code as a linear map: for each messagem ∈ Fkq we obtain
the corresponding codeword mG. Of course, since the choice of basis is not unique,
neither is the choice of generator matrix. In a more specific explanation, given a generator
matrix G, then the matrix SG, where S is any invertible matrix, generates the same code.
It is often possible to choose S in a particular way, so that G = (Ik|M). This is called
systematic form of the generator matrix.

Note that when using a generator matrix in systematic form each message appears
in the first k positions of the corresponding codeword (i.e. the first k positions carry the
information symbols).

We now provide several definitions that are important for the understanding of the
remainder of the thesis.

Definition 2.13. Let C be an [n,k] linear code over Fq. The Dual Code of C is the set
C⊥ = {x ∈ Fnq : x · y = 0 ∀y ∈ C}.

12 CHAPTER 2. BACKGROUND ON CODE-BASED CRYPTOGRAPHY

Theorem 2.14. Let C be an [n,k] linear code over Fq. Then the dual code C⊥ is an
[n,n− k] linear code. Moreover, if G = (Ik|M) is a generator matrix in systematic form
for C, then H = (−MT |In−k) is a generator matrix for C⊥.

The matrix H is an important matrix for the code C as you can see in Definition 2.15.

Definition 2.15. Let C be an [n,k] linear code over Fq and let C⊥ be its dual code. Any
generator matrix for C⊥ is called parity-check matrix for C.

The parity-check matrix describes the code as follows. Given x ∈ Fnq :

x ∈ C ⇐⇒ HxT = 0. (2.8)

As its name suggests the parity-check matrix is used for checking if the codeword is
correct, i.e., it checks if the codeword has not an error. Originally it was used for codes in
which a single redundancy bit is added at the end of a codeword, the bit being a 0 if the
codeword has an even number of 1’s and a 1 otherwise. If a received word has an odd
number of 1’s, it is sure that at least an error has occurred.

The vector HxT is called syndrome of x, and gives its name to an error-correcting
method, known as syndrome decoding. It works by splitting the code C in qn−k cosets
and then pre-computing a table containing the syndromes of all the corresponding coset
leaders.

Algorithm 1: High level description of syndrome decoding.

Data: An (n− k)× n parity check matrix and z = x+ e ∈ Fnq
Result: The codeword x

1 Compute the syndrome as s = HzT ;
2 find the coset leader l associated to s;
3 if l is found, return x = z− l, else return ⊥;

The syndrome decoding method succeeds as long as w = wth(e) is within the cor-
recting radius of the code, i.e. w 6 bd−1

2 c, where d is the minimum distance of the
code. In fact, since x is a codeword, we have HzT = HxT + HeT = 0 + HeT = HeT

and because its weight is within the correcting radius, e is the uniquely determined coset
leader and it is possible to use the Algorithm 1 for finding the codeword x.

We now move to a concept about codes that will be useful for understanding Chapter 4
of the thesis.

2.2.1 – Cyclic codes.

Definition 2.16. Let C be an [n,k] linear code over Fq. We call C cyclic if

∀a = (a0, . . . ,an−1) ∈ C⇒ a ′ = (an−1,a0, . . . ,an−2) ∈ C. (2.9)

If the property holds, then all the right shifts, for any number of positions have to
belong to C as well.

It is possible to use polynomial rings for building cyclic codes. In fact, it is natu-
ral to build a bijection between cyclic codes and ideals of a polynomial ring defined as
Fq[x]/(xn − 1). It is possible to identify the vector (a0,a1, . . . ,an−1) with the polyno-
mial a0 + a1x + · · · + xn−1an−1, and then the right shift operation corresponds to the
multiplication of the polynomial by x in the ring Fq[x]/(xn − 1).

2.2. CODING THEORY 13

We can generate different ideals using different monic polynomials g(x), such that
g(x) divides xn − 1 as shown below. Each polynomial corresponds to a different cyclic
code, and we therefore call g the generator polynomial of the code. From this polynomial
we can produce a generator matrix and this will have a special form.

Definition 2.17. Let g(x) ∈ Fq[x] be monic of degree n − k and a divisor of xn − 1.
Then g generates a cyclic [n,k] code over Fq, B = {g(x), xg(x), . . . , xk−1g(x)} is a basis
for C, and we obtain the generator matrix

G =


g(x)
xg(x)

...
xk−1g(x)

 . (2.10)

The matrix G will be in circulant form, where the i-th row corresponds to the cyclic
right shift by i positions of the first row. A circulant matrix is a matrix in which every row
is obtained as a cyclic right shift of the previous, see Section 2.2.5 for more details about
circulant matrices.

Definition 2.18. Let q be a prime power and n,k positive integers such that 1 6 k 6
n 6 q. Let m be the multiplicative order of q modulo n, α a primitive n-th root of unity
in Fqm and Pm,k be the set of polynomials of degree 6 k over Fqm . Fix x ∈ Fnq with
xi 6= xj and y ∈ Fnqm with yi 6= 0. Then the Generalized Reed-Solomon (GRS) Code of
order r = n− k is the code GRSr(x,y) = {(y1f(x1),y2f(x2), . . . ,ynf(xn)) : f ∈ Pm,k}.

2.2.2 – Alternant Codes. We now present the notion of alternant codes, that are de-
fined as subfield subcodes of GRS codes.

Definition 2.19. Let C be an [n,k] linear code over Fqm . The subfield subcode C|Fq of C
over Fq is the vector space C ∩ Fnq .

The easiest way to obtain a subfield subcode is to use the trace construction.

Definition 2.20. Let H = {hi,j} be an r × n matrix over Fqm . Fix an ordered basis E =
{e1, . . . , em} for Fqm over Fq and the corresponding projection function φE : Fqm → Fmq
defined byφE(α) = (a1, . . . ,am)T forα = a1e1+· · ·+amem. We define the Trace Matrix
T(H) as the rm×nmatrix obtained by replacing each element hi,j with the column vector
φE(hi,j); and the Co-Trace Matrix T ′(H) as the rm× n matrix whose (((l − 1)r) + i, j)
element is φE(hi,j)l, for i = 1, . . . , r, j = 1, . . . ,n and l = 1, . . . ,m. Note that T ′(H) is
equivalent to T(H) by a left rotation. The code defined by T(H) is the trace code of the
code defined by the parity-check matrix H.

MacWilliams and Sloane [MS77] show that the dual of C|Fq is the trace of the dual of
C. The generator matrix for the dual code is in fact a parity-check matrix for C, in practice
this means that we can build a parity-check matrix for the subfield subcode directly from
C.

Theorem 2.21. Let C be an [n,k,d] linear code over Fqm andH be a parity-check matrix
for C. Then the subfield subcode C|Fq is an [n,k ′,d ′] linear code over Fq, where k ′ >
n−m(n− k),d ′ > d and Ĥ = T(H) is a parity-check matrix for it.

14 CHAPTER 2. BACKGROUND ON CODE-BASED CRYPTOGRAPHY

The proof from Theorem 2.21 can be found in [Per12b].

Definition 2.22. Let GRSr(x,y) be a GRS code of order r over Fqm for a certain prime
power q and extension degreem > 1. The Alternant CodeAr(x,y) is the subfield subcode
GRSR(x,y)|Fq .

An alternant code Ar(x,y) has a special form for the parity-check matrix:

H(x,y) =


y1 · · · yn
y1x1 · · · ynxn

...
...

...
y1x

r−1
1 · · · ynx

r−1
n

 (2.11)

Definition 2.23. LetAr(x,y) be an alternant code over Fq as defined in Definition 2.22.
Suppose that one receives a vector with error e having wt(e) = w within the correction
range, with error values v1, . . . , vw in positions p1, . . . ,pw. We call:

– Error Locators the elements xp1 , . . . , xpw ;

– Error Locator Polynomial the polynomial Λ(z) =
w∏
i=1

(1 − xpiz); and

– Error Evaluator Polynomial the polynomial Ω(z) =
∑w
j=1 vjypj

∏
16i6w
i 6=j

(1 − xpiz).

The error positions are uniquely determined by the reciprocals of the roots ofΛ. Once
these are found, the error values are given by Equation 2.12.

vj =
Ω(x−1

pj
)

ypj

∏
16i6w
i 6=j

(1 − xpix
−1
pj

)
(2.12)

Algorithm 2 gives a high level view for how it is possible to find and correct errors from
a syndrome s using alternant decoding.

Algorithm 2: High level of alternant decoding algorithm.

Data: An r× n parity-check matrix H(x,y) and syndrome s ∈ Frq
Result: The error vector e

1 Compute the corresponding polynomial from syndrome s as S(z) =
∑r−1
i=0 siz

i;
2 Use Euclidean algorithm for polynomials to solve the key equation

Ω(z) ≡ Λ(z)S(z) mod zr (2.13)

and retrieve Λ and Ω;
3 Find roots of Λ;
4 Build the error vector e having value vi in position pi for i = 1, . . . ,w;
5 return e;

We will present methods for finding roots in Chapter 5.

2.2. CODING THEORY 15

Among alternant codes there are several families but in this thesis we have interest in
the following families of codes:

• Goppa codes
• Generalized Srivastava codes.

2.2.3 – Goppa codes. A binary Goppa code Γ(L,g(z)) is defined by a polynomial
g(z) = g0 + g1z + · · · + gtzt =

∑t
i=0 giz

i over F2m with degree t which is square free
and a vector L = (α0,α1, . . . ,αn−1) ∈ Fn2m , αi 6= αj, and g(αi) 6= 0 for all αi ∈ L. The
ordered set L is known as support. For more details about algebraic codes, see [Ber15].

For any vector c = (c0, c1 . . . , cn−1) ∈ Fn2 we define the syndrome polynomial

Sc(z) =

n∑
i=1

ci

z+ αi
,

where 1
z+αi

is the unique polynomial of degree < t with (z+ αi)
1

z+αi
≡ 1 mod g(z).

Definition 2.24. The binary Goppa code Γ(L,g(z)) consists of all vectors c ∈ Fn2 such
that

Sc(z) ≡ 0 mod g(z). (2.14)

The parameters of a code are the length n, dimension k and minimum distance d. In
this thesis, we will use the notation [n,k,d]−Goppa to refer to a binary Goppa code with
parameters n,k and d. A Goppa code Γ(L,g(z)) is a linear code over F2m .

The length of a Goppa code is given by n = |L|, its dimension is k > n −mt, where
t = deg(g), and its minimum distance d > t + 1. The syndrome polynomial Sc(z)
satisfies the following property:

Sc(z) ≡
w(z)

Λ(z)
mod g(z), (2.15)

for somew(z) ∈ F2[z] of degree deg(w) < deg(Λ) and Λ(z) =
t∏
i=1

(1 + zαi) is called the

error locator polynomial (ELP) and the roots of this polynomial give the error positions.

2.2.4 – Generalized Srivastava Codes. Srivastava Codes are an alternative to Goppa
Codes that can be used in code-based cryptography. They originated from an unpublished
work of J.N. Srivastava from 1967. In 1972, Helgert [Hel72] used Srivastava’s original
work to propose an alternative for BCH codes1.

LetH be the parity-check matrix in the form of Equation 2.11. For every r×r invertible
matrix S, the matrix SH is an equivalent parity-check matrix. It is then clear that an

1For more details see [CL04].

16 CHAPTER 2. BACKGROUND ON CODE-BASED CRYPTOGRAPHY

alternative form for H(x,y) is

H(x,y) =


s1,1 · · · s1,r

s2,1 · · · s2,r
...

...
...

sr,1 · · · sr,r




y1 · · · yn
y1x1 · · · ynxn

...
...

...
y1x

r−1
1 · · · ynx

r−1
n



=


y1f1(x1) · · · ynf1(xn)
y1f2(x1) · · · ynf2(xn)

...
...

...
y1fr(xq) · · · ynfr(xn)


(2.16)

where fi(x) = si,1 + si,2x+ si,3x2 + · · ·+ si,rxr−1 for each i = 1, . . . , r.

Definition 2.25. Fix a finite field Fqmwith m > 1. Let α1, . . . ,αn,w1, . . . ,ws be n + s
distinct elements of Fqm , and z1, . . . , zn be non-zero elements of Fqm . The Generalized
Srivastava (GS) code of order r = st and length n is the alternant code Ar(x,y) defined
by the parity-check matrix (Equation 2.16) having

f(l−1)t+k(x) =

∏s
j=1(x−wj)

t

(x−wl)k
for l = 1, . . . , s and k = 1, . . . , t

yi =
zi∏s

j=1(αi −wj)
t

for i = 1, . . . ,n.

This implies

yif(l−1)t+k(αi) =
zi

(αi −wl)k
(2.17)

for i = 1, . . . ,n, l = 1, . . . , s and k = 1, . . . , t. It is then possible to deduce a standard
form for the parity-check matrix of GS codes as

H =


L1

L2
...
Ls

 , (2.18)

where each block Li is

Li =


z1

α1−wi
· · · zn

αn−wi
z1

(α1−wi)2 · · · zn
(αn−wi)2

...
...

...
z1

(α1−wi)t
· · · zn

(αn−wi)t

 . (2.19)

Since GS codes are alternant codes, the parameters are length n 6 qm−s, dimension
k > n −mst and minimum distance d > st + 1. By analogy with BCH codes, GS codes
are called primitive if the αi’s are chosen to be all the elements of Fqm apart from the
wi’s. In this case the code length is exactly n = qm − s.

2.2. CODING THEORY 17

GS codes are a large family of codes that includes other families as a special case.
For example, when m = 1 these are called Gabidulin codes. Moreover, it is easy to
prove that every GS code with t = 1 is a Goppa code. This makes GS codes good for
several applications in particular the usage in cryptography. One of the first uses of GS
codes in cryptography came in [Per12a], where Persichetti proposed a compact McEliece
cryptosystem using Quasi-Dyadic Srivastava codes. Later on, DAGS [BBB+18] used the
same codes for a key encapsulation mechanism safe against quantum computers.

2.2.5 – Circulant Matrices and Quasi-Cyclic Codes. Recall that a circulant matrix
is a matrix in which every row is obtained as a right cyclic shift of the previous. Equa-
tion (2.20) shows a circulant matrix of size2 p.

Cp =


t0 t1 · · · tp−1

tp−1 t0 · · · tp−2
...

. . .
...

t1 t2 · · · t0

 (2.20)

Circulant p × p matrices over Fqm form a ring that we will denote by Cp(Fqm). Its
cardinality is |Cp(Fqm)| = qmp.

Proposition 2.26. Let xp − 1 = pα1
1 (x) · · · · · pαtτ (x) be the factorization of xp − 1 over

Fqm into powers of irreducible factors. The number of invertible circulant matrices in

Cp(Fqm) is equal to
τ∏
i=1

(qm·diαi − qm·di(αi−1)), where di is the degree of pi(x) in the

factorization of xp − 1.

Proof. The ring Cp(Fqm) is isomorphic to Fqm [x]/〈xp − 1〉 where the matrix Cp corre-
sponds to the polynomial t(x) =

∑p−1
i=0 tix

i. From the factorization

xp − 1 = pα1
1 (x) · · · · · pαττ (x),

and the Chinese Remainder Theorem, Fqm [x]/〈xp−1〉 is isomorphic to the direct product:

Fqm [x]/〈xp − 1〉 ∼= Fqm [x]/〈pα1
1 (x)〉 × · · · × Fqm [x]/〈pαtτ (x)〉.

The number of invertible elements in Fqm [x]/〈pαii (x)〉 is qm·diαi − qm·di(αi−1) where
di is the degree of pi(x). Now it is easy to count the number of invertible elements in
Fqm [x]/〈xp − 1〉. It is precisely the product of the number of invertible elements in each

Fqm [x]/〈pαii (x)〉, i.e.,
τ∏
i=1

(qm·diαi − qm·di(αi−1)).

Note that when α1 = α2 = · · · = ατ = 1, Fqm [x]/〈xp − 1〉 factors into a direct

product of fields, and our formula turns into
τ∏
i=1

(qm·di − 1).

2A circulant matrix can be defined as a special case of Toeplitz matrix; for more details about Toeplitz
matrices see [Gra06].

18 CHAPTER 2. BACKGROUND ON CODE-BASED CRYPTOGRAPHY

A quasi-cyclic code is a code with generator matrix of the form

G =


C11 C12 · · · C1n0

C21 C22 · · · C2n0

...
. . .

...
Ck01 Ck02 · · · Ck0n0

 (2.21)

where each matrix Cij is a circulant matrix of the form 2.20.

2.2.6 – Rank Metric Codes.

Definition 2.27. Let x = (x1, . . . , xn) ∈ Fnqm and let (β1, . . . ,βm) ∈ Fmqm be a basis of
Fqm viewed as anm-dimensional vector space over Fq. Each coordinate xj is associated
to a vector of Fmqm in this basis: xj =

∑m
i=1mijβi. The m× n matrix associated to x is

given byM(x) = (mij)16i6m
16j6n

.

The rank weight ||x|| of vector x is defined as:

||x||
def
= RankM(x),

where RankM(x) is the usual rank of a binary matrix.
Similar to how the Hamming weight leads to the Hamming distance, we can define

a distance based on rank weight. We can define the distance between two elements as
d(x,y) = ||x− y|| where x,y ∈ Fnqm .

We define an Fqm -linear code using rank metric as:

Definition 2.28. An Fqm -linear code C of dimension k and length n is a subspace of
dimension k of Fnqm endowed with the rank metric. It is denoted by [n,k]qm . The code
C can be represented by two equivalent ways:

• by a generator matrix G ∈ Fk×nqm , each row of G is an element of a basis of C,

C = {xG : x ∈ Fkqm }.

• by a parity-check matrix H ∈ F(n−k)×nqm , each row of H determines a parity check
equation verified by the elements of C:

C = {x ∈ Fnqm : HxT = 0}.

The systematic form of a generator matrix G is in the form (Ik|A) where Ik is the
identity matrix. The systematic form of a parity-check matrix H is similar to G and it can
be described as (−A>|In−k), where In−k is the identity matrix.

Definition 2.29. Let x = (x1, . . . , xn) ∈ Fnqm . The support E of x, denoted by supp(x)
is the Fq-subspace of Fqm generated by the coordinates of x, i.e.,

E = 〈x1, . . . , xn〉Fq

and the dimension equals to the rank weight ||x|| = dim(E).

2.2. CODING THEORY 19

2.2.7 – LRPC Codes. A Low-Rank Parity-Check (LRPC) code C over Fqm of length n,
dimension k and rank d is defined as below.

Definition 2.30. A rank-d code is described by an (n− k)× n parity-check matrix H =

{hi,j} ∈ F(n−k)×nqm , whose coefficients hi,j generate a subspace of Fqm of dimension at
most d. More precisely, each coefficient hi,j can be written as

hi,j =

d∑
l=1

hi,j,lFl,hi,j,l ∈ Fq, (2.22)

where each Fi ∈ Fqm , and F = 〈F1, F2, · · · , Fd〉 is an Fq subspace of Fqm of dimension
at most d generated by the basis {F1, F2, · · · , Fd}.

2.2.7.1 – Decoding of LRPC codes. Consider an LRPC code with parity-check matrix H
of length n, dimension k and rank d, with basis F = {F1, · · · , Fd}. Let e = {ei} ∈ Fnqm be
a vector of rank r, let the support supp(e) of e have basis E = {E1, · · · ,Er}. Considering
the matrix representation, the vector e can be described as a matrix Ē = {ei,j}, with
i ∈ [1;n], j ∈ [1; r], such that

ei =

r∑
j=1

ei,jEj, ei,j ∈ Fq. (2.23)

Let s ∈ Fn−kqm be the syndrome of ewith respect toH, i.e. He> = s. Decoding consists
in recovering e, from the knowledge of s. A decoding procedure, specific for the case of
LRPC codes, has been proposed in [GMRZ13], and is shown in Algorithm 3. Under proper
conditions, the syndrome equation can be rewritten as a linear system whose unknowns
are nr scalars in Fq. Indeed, for the i-th coordinate of s, we have

si =

n∑
j=1

hi,jej =

n∑
j=1

(
d∑
l=1

hi,j,lFl

)(
r∑
v=1

ej,uEu

)
(2.24)

=

d∑
l=1

r∑
u=1

FlEu

 n∑
j=1

hi,j,lej,u

 . (2.25)

Then, by considering Equation 2.24 for all i ∈ [1;n − k], the syndrome equation can be
rewritten as

s ′ = AHe ′>, (2.26)

where s ′ ∈ F(n−k)rdq , AH ∈ F(n−k)rd×nrq and e ′ ∈ Fnrq .

Essentially, the above equation corresponds to the writing of the syndrome equation
in the base field Fq. In particular, s ′ contains the coefficients of the syndrome in the
basis {FiEj} i6i6d

16j6r
, while AH and e ′ are obtained through a rewriting of H and e. Then,

decoding can be performed through Algorithm 3.
The output of the algorithm corresponds to the vector e ′, that is, to the coefficients

of e in the basis E.
Note that Algorithm 3 is characterized by a certain failure probability, which can be

estimated according to the system parameters. In particular, decoding failures can happen
only because of the following three events [GMRZ13].

20 CHAPTER 2. BACKGROUND ON CODE-BASED CRYPTOGRAPHY

Algorithm 3: Decoding of LRPC codes.

Data: s ∈ Fn−kqm , s ′ ∈ F(n−k)rdq , AH ∈ F(n−k)rd×nrq , basis {Fi}16i6d
Result: e ′ ∈ Fq in the basis E

1 S← 〈s1, s2, . . . , sn−k〉 ; // Syndrome space
2 for i← 1 to d do
3 Si ← F−1

i S;
4 end
5 E← ⋂d

j=1 Sj; // Compute the error support
6 {E1, . . . ,Er}← basis for E;
7 Solve s ′ = AHe ′> ; // Find the coefficients of e ′ in the basis E
8 return e ′;

a) Case of dim
(
〈EF〉

)
< rd: this happens with probability P1 = d

qm−rd (see [GMRZ13,
Sec. 3, Prop. 1]).

b) Case of E 6= ⋂di=1 Si: when m > rd+ 8, this happens with probability P2 � 2−30

(see [GMRZ13, Sec. 3, Remark 3]).
c) Case of dim

(
S
)
< rd : this happens with probability P3 = 1

qn−k+1−rd (see [GMRZ13,
Sec. 5, Prop. 4]).

For parameters of practical interest, we usually have P1,P2 � P3: this fact is crucial for
the success of the attack presented in Chapter 6.

2.2.8 – McEliece cryptosystem. In this part, we describe the three important algo-
rithms of the McEliece cryptosystem [McE78], i.e., key generation, message encryption,
and message decryption. To give a practical explanation, we describe the McEliece scheme
based on binary Goppa codes. However, it can be used with any q-ary Goppa code or Gen-
eralized Srivastava codes with small modifications as shown by [MB09, BLP10] and the
work in Chapter 4.

Algorithm 4 is the key generation of McEliece. First, it starts by generating a bi-
nary Goppa polynomial g(z) of degree t, which can be an irreducible Goppa polynomial.
Second, it generates the support L as an ordered subset of F2m satisfying the root condi-
tion. Third, the computation of the systematic form of Ĥ is done using the Gauss-Jordan
elimination algorithm, if possible. Steps four, five, and six compute the generator ma-
trix from the previous systematic matrix and return secret and public key. Biswas and
Sendrier [BS08] show that the safest method to obtain the public matrix is simply to
compute the systematic form of the private matrix.

Algorithm 5 shows the encryption process of McEliece. The process is simple and
efficient, requiring only a random vector e with wh(e) 6 t and a multiplication of a
vector by a matrix.

Algorithm 6 gives the decryption part of McEliece. This algorithm consists of the re-
moval of the applied errors using a decoding algorithm. First, we compute the syndrome
polynomial Sc(z). Second, we recover the error vector e from the syndrome polynomial.
Finally, we can recover the plaintext m computing c ⊕ e, i.e., the exclusive-or of the
ciphertext and the error vector.

Note that this model should not be used in practice since c has an almost unmodified

2.2. CODING THEORY 21

Algorithm 4: McEliece key generation.
Data: t,k,n,m as integers.
Result: pk as public key, sk as secret key.

1 Select a random binary Goppa polynomial g(z) of degree t over F2m ;
2 Randomly choose n distinct elements of F2m that are not roots of g(z) as the

support L;
3 Compute the k× n parity-check matrix Ĥ according to L and g(z);
4 Bring H to systematic form: Hsys = [Ik−n|H

′] if possible;
5 Compute generator matrix G from Hsys;
6 return sk = (L,g(z)), pk = (G);

Algorithm 5: McEliece encryption.

Data: Public key pk = G, message m ∈ Fk2 .
Result: c as ciphertext of length n.

1 Choose randomly an error vector e of length n with wh(e) 6 t;
2 Compute c = (m ·G)⊕ e;
3 return c;

copy of m in the first k positions. In modern KEM versions of McEliece, m ∈ Fk2 is a
random bit string used to compute a session key using a hash function. Hence, there is
no intelligible information in seeing the first k positions of m with almost no error, see
Section 2.2.9 for details.

Algorithm 6: McEliece decryption.

Data: c as ciphertext of length n, secret key sk = (L,g(z)).
Result: Message m.

1 Compute the syndrome polynomial Sc(z) =
∑ ci

z+αi
mod g(z);

2 Compute τ(z) =
√
S−1
c (z) + z mod g(z);

3 Compute b(z) and a(z), so that b(z)τ(z) = a(z) mod g(z), such that
deg(a)6 b t2c and deg(b)6 b t−1

2 c;
4 Compute the error locator polynomial Λ(z) = a2(z) + zb2(z) and deg(Λ) 6 t;
5 The positions in L of the roots of Λ(z) define the error vector e;
6 Compute the plaintext m = c⊕ e;
7 return m;

In the decryption algorithm, steps 2-5 are the description of Patterson’s algorithm
[Pat75]. This same strategy can be used in schemes that make use of the Niederreiter
cryptosystem [CR88]. These schemes differ in their public-key structure, encryption, and
decryption step, but both of them, in the decryption steps, decode the message from the
syndrome.

The roots of the ELP can be acquired with different methods. Although these methods
can be implemented with different forms, it is essential that the implementations do not

22 CHAPTER 2. BACKGROUND ON CODE-BASED CRYPTOGRAPHY

leak any timing information about their execution. This leakage can lead to a side-channel
attack using time differences in the decryption algorithm, as we explore in a scheme in
Chapter 5.

2.2.9 – Niederreiter cryptosystem. In this part, we describe a Key Encapsulation
Mechanism (KEM) version of the Niederreiter cryptosystem [Nie86]. The key genera-
tion works essentially as in Algorithm 4. The only difference is, that the output is the
parity-check matrix in systematic form instead of the generator matrix. The encapsula-
tion algorithm takes a public key and returns a ciphertext and a symmetric key. The latter
can be used for encryption of data using symmetric ciphers. The ciphertext is sent to the
other party. The encapsulation for the Niederreiter cryptosystem is given as Algorithm 7.

Algorithm 7: Niederreiter key encapsulation.
Data: Public key pk = H.
Result: ciphertext c ∈ Fn−k2 , symmetric key K.

1 Choose randomly an error vector e of length n with wh(e) 6 t;
2 Compute c = (H · e);
3 Compute K = Hash(e);
4 return c,K;

The decapsulation takes a ciphertext and a secret key and produces a symmetric key
K. For honestly generated ciphertexts the symmetric key K output during encapsulation is
the same as the one output by the decapsulation algorithm. The steps of the decapsulation
follow closely the McEliece decryption process and are given as Algorithm 8.

Algorithm 8: Niederreiter key decapsulation.

Data: ciphertext c ∈ Fn−k2 , secret key sk = (L,g(z)).
Result: Symmetric key K.

1 Compute the syndrome polynomial Sc(z) =
∑ ci

z+αi
mod g(z);

2 Compute τ(z) =
√
S−1
c (z) + z mod g(z);

3 Compute b(z) and a(z), so that b(z)τ(z) = a(z) mod g(z), such that
deg(a)6 b t2c and deg(b)6 b t−1

2 c;
4 Compute the error locator polynomial Λ(z) = a2(z) + zb2(z) and deg(Λ) 6 t;
5 The positions in L of the roots of Λ(z) define the error vector e;
6 Compute the symmetric key K = Hash(e);
7 return K;

2.2.10 – LRPC Cryptosystems. LRPC cryptosystems were introduced in [GMRZ13],
where the authors first present the low-rank parity-check codes and their application in
cryptography. In [GMRZ13], the authors describe a McEliece type of cryptosystem but the
Niederreiter version can be used as well. The key generation, encryption and decryption
of the typical LRPC cryptosystem are summarized in Figure 2.1.

Figure 2.1 and the LRPC cryptosystem provide a general framework for schemes based
on LRPC codes. However, the usual setting in practical schemes is to use specific types

2.2. CODING THEORY 23

1 Key generation: Choose a random LRPC code over Fqm of low rank d with
support F and parity check (n − k) × n matrix H, generator matrix G and
decoding matrixDH which can correct errors of rank r and a random invertible
(n− k)× (n− k) matrix R.
Secret Key: the low rank matrix H, the masking matrix R.
Public Key: the matrix G′ = RG.

2 Encryption: Translate the message m into a word x, generate e ∈ Fqm
randomly with rank r. Compute c = xG′ + e.

3 Decryption: Compute syndrome s = HcT , recover the error vector e by
decoding the LRPC code, then compute xG′ = c − e and x.

Figure 2.1: LRPC cryptosystem.

of LRPC codes. The motivation is that these allow for shorter keys. The specific types of
LRPC codes used include quasi-cyclic codes, as for example in [GRSZ14] (and later also
used in McNie [KKG+18] and Ouroboros-R [MAAB+17]), and ideal codes (which are
a generalization of LRPC codes and used in LAKE [ABG+17a], Locker [ABG+17b] and
Rollo [MAAB+19]). All of the previous cryptosystems show clear advantages over cryp-
tosystems in the Hamming metric – for the same level of security, the keys are orders of
magnitude smaller. For instance, the public key in Classic McEliece is 132KB while Rollo-
II has a public key of size 2.4KB. Furthermore, ideal codes (with additional assumptions)
have been used in the construction of the signature scheme Durandal [ABG+19] – show-
ing once more the advantage over the Hamming metric where the construction of efficient
signature schemes is still a problem.

Chapter 3

Fast Multiplication and Inversion in
Dyadic Matrices

In this chapter, we consider efficient methods for computing the multiplication of two
dyadic matrices and the inversion of a dyadic matrix. In fact, we mentioned in Subsec-
tion 2.1.1 properties about the arithmetic of dyadic matrices and showed that multiplica-
tion of two dyadic matrices can be computed from their signatures. Similarly, inversion
of a dyadic matrix if it is not singular can be computed from the signature.1 In particu-
lar, we analyze three different algorithms and provide estimations for their complexities;
we then compare the performance of the various algorithms. For ease of notation, we
will refer to the two n × n matrices that we want to multiply simply as A and B, with
a = [a0,a1, . . . ,an−1] and b = [b0,b1, . . . ,bn−1] being the respective signatures. Main-
taining the same notation, the product matrix C = AB, which is also dyadic, will have
signature c = [c0, c1, . . . , cn−1]. In particular, we focus on the special case of quasi-dyadic
matrices with elements belonging to a field F of characteristic 2.

3.1 — Standard Multiplication

The first algorithm we analyze is described in Algorithm 9; we refer to it as the stan-
dard multiplication. The element of C in position (i, j) is obtained as the multiplication
between the i-th row of A and the j-th column of B. Since dyadic matrices are symmetric,
this is equivalent to the inner product between the i-th row of A and the j-th one of B.
The signature c (i.e., the first row of C) is obtained by inner products involving only a
(i.e., the first row of A) and b. Thus, we can just construct the rows of B, by permuting

1This chapter is a joint work with Paulo S.L.M. Barreto, Edoardo Persichetti and Paolo Santini and it was
presented at Mathcrypt 2018 [BBPS18]

26 CHAPTER 3. FAST MULTIPLICATION AND INVERSION IN DYADIC MATRICES

the elements in b, and then computing the inner products.

Algorithm 9: Standard multiplication of dyadic matrices
Data: r ∈ N, n = 2r and a, b ∈ Fn.
Result: c ∈ Fn such that ∆(c) = ∆(a)∆(b).

1 c← vector of length n, initialized with null elements;
2 c0 ← a0 · b0;
3 for i← 1 to n− 1 do
4 c0 ← c0 + aibi;
5 i(b) ← binary representation of i, using r bits;
6 for {j = 0, 1, · · · ,n− 1} do
7 j(b) ← binary representation of j, using r bits;
8 l(b) ← i(b) ⊕ j(b);
9 l← conversion of l(b) into an integer;

10 ci ← ci + aibl;
11 end
12 end
13 return c;

The complexity of the algorithm is due to two different types of operations:
1. In order to construct the rows of B, we need the indices of the corresponding per-

mutations. Each index is computed as the modulo 2 sum of two binary vectors
of length r, so it can be obtained with a complexity of r binary operations. Thus,
considering that we need to repeat this operation for 2r− 1 rows (for the first one,
no permutation is needed), the complexity of this procedure can be estimated as
r · 2r · (2r − 1).

2. Each element of c is obtained as the inner product between two vectors of 2r ele-
ments, assuming values in F. This operation requires 2r multiplications and 2r− 1
sums in F. If we denote asCmult andCsum the costs of, respectively, a multiplication
and a sum in F, the total number of binary operations needed to compute 2r inner
products can be estimated as 22r · Cmult + (22r − 2r) · Csum.

The complexity of a standard multiplication between two dyadic signatures can be
estimated as:

Cstd = r ·
(
22r − 2r

)
+ 22r · Cmult + (22r − 2r) · Csum (3.1)

3.2 — Dyadic Convolution

Definition 3.1. The dyadic convolution of two vectors a, b ∈ Rn, denoted by a Í b, is the
unique vector of R such that ∆(a Í b) = ∆(a)∆(b).

Of particular interest to us is the case where R is actually a field F. Dyadic matrices
over F form a commutative subring ∆(Fn) ⊂ Fn×n, and this property gives rise to ef-
ficient arithmetic algorithms to compute the dyadic convolution. In particular, we here
consider the fast Walsh-Hadamard transform (FWHT), which is well known [Gul73] but
seldom found in a cryptographic context. We describe it here for ease of reference. We
firstly recall the FWHT for the case of a field F such that char(F) 6= 2 as in shown [FA76],
and then describe how this technique can be generalized to consider also the case of
char(F) = 2 (which, again, is the one we are interested in).

3.2. DYADIC CONVOLUTION 27

Definition 3.2. Let F be a field with char(F) 6= 2. The Sylvester-Hadamard matrix Hr ∈
Fn is recursively defined as

H0 =
(

1
)

,

Hr =

(
Hr−1 Hr−1

Hr−1 −Hr−1

)
, r > 0.

One can show by straightforward induction that H2
r = 2rIr and hence H−1

r = 2−rHr,
which can also be expressed recursively as

H−1
0 =

(
1
)

,

H−1
r =

1
2

(
H−1
r−1 H−1

r−1
H−1
r−1 −H−1

r−1

)
, r > 0.

Lemma 3.3. Let F be a field with char(F) 6= 2. If M ∈ Fn×n is dyadic, then H−1
r MHr is

diagonal.

Proof. The lemma clearly holds for r = 0. Now let r > 0, and write

M =

(
A B
B A

)
where A and B are dyadic. It follows that

H−1
r MHr =

1
2

(
H−1
r−1 H−1

r−1
H−1
r−1 −H−1

r−1

)(
A B
B A

)(
Hr−1 Hr−1

Hr−1 −Hr−1

)
=

(
H−1
r−1M+Hr−1 O

O H−1
r−1M−Hr−1

)
,

and since both M+ = A+B and M− = A−B are dyadic, H−1
r−1M+Hr−1 and H−1

r−1M−Hr−1

are diagonal by induction, as is thus also H−1
r MHr.

Lemma 3.3 establishes that Sylvester-Hadamard matrices diagonalize all dyadic ma-
trices. In this way, the factors in a product of dyadic matrices are thus simultaneously
diagonalized, suggesting an efficient way to carry out the matrix multiplication, namely,
computing H−1

r (MN)Hr = (H−1
r MHr)(H−1

r NHr) given the diagonal forms H−1
r MHr and

H−1
r NHr of two dyadic matrices M and N requires only n multiplications of the diagonal

elements.
In fact, it is not necessary to compute H−1

r MHr in full to obtain the diagonal form of
M, as indicated by the following result:

Lemma 3.4. Let F be a field with char(F) 6= 2. The diagonal form of a dyadic matrix
M ∈ Fn×n is the first row of MHr. In other words, H−1

r ∆(m)Hr = diag(mHr).

Proof. The lemma clearly holds for r = 0. Now let r > 0, and with the notation of
Lemma 3.3, the diagonal of H−1

r MHr is the concatenation of the diagonals of H−1
r−1M+Hr−1

and H−1
r−1M−Hr−1. Similarly, since

MHr =
(

A B
B A

)(
Hr−1 Hr−1

Hr−1 −Hr−1

)
=

(
M+Hr−1 M−Hr−1

M+Hr−1 −M−Hr−1

)
,

28 CHAPTER 3. FAST MULTIPLICATION AND INVERSION IN DYADIC MATRICES

the first row of MHr is the concatenation of the first rows of M+Hr−1 and M−Hr−1, which
by induction are the diagonals of H−1

r−1M+Hr−1 and H−1
r−1M−Hr−1 respectively, yielding

the claimed property.

Corollary 3.5. Computing c such that ∆(a)∆(b) = ∆(c) involves only three multiplica-
tions of vectors by Sylvester-Hadamard matrices.

Proof. By Lemma 3.4,

diag(aHr) diag(bHr) = (H−1
r ∆(a)Hr)(H

−1
r ∆(b)Hr)

= H−1
r ∆(a)∆(b)Hr = H−1

r ∆(c)Hr
= diag(cHr).

Now simply retrieve c from z = cHr as c = zH−1
r = 2−rzHr.

The structure of Sylvester-Hadamard matrices leads to an efficient algorithm to com-
pute aHr for a ∈ Fn, which is known as the fast Walsh-Hadamard transform. Let [a0, a1]
be the two halves of a. Thus

aHr = (a0, a1)

(
Hr−1 Hr−1

Hr−1 −Hr−1

)
= ((a0 + a1)Hr−1, (a0 − a1)Hr−1).

This recursive algorithm, which can be easily written in a purely sequential fashion (Al-
gorithm 10), has complexity Θ(n logn), specifically, rn additions or subtractions in F.
It is therefore somewhat more efficient than the fast Fourier transform, which involves
multiplications by n-th roots of unity, when they are available at all (otherwise working
in extension fields is unavoidable, and more expensive).

Algorithm 10: The fast Walsh-Hadamard transform (FWHT)
Data: r ∈ N, n = 2r and a ∈ Fn with char(F) 6= 2.
Result: aHr, where Hr is a Sylvester-Hadamard matrix.

1 v← 1;
2 for j← 1 to n do
3 w← v;
4 v← 2v;
5 for i← 0 to n− 1 by v do
6 for l← 0 to w− 1 do
7 s← ai+l;
8 q← ai+l+w;
9 ai+l ← s+ q;

10 ai+l+w ← s− q ;
11 end
12 end
13 end
14 return a;

The product of two dyadic matrices ∆(a) and ∆(b), or equivalently the dyadic con-
volution a Í b, can thus be efficiently computed as described in Algorithm 11. The total

3.3. KARATSUBA MULTIPLICATION 29

cost is 3rn additions or subtractions and 2nmultiplications (half of these by the constant
2−r = 1/n) in F, with an overall complexity Θ(n logn).

Algorithm 11: Dyadic convolution via the FWHT

Data: r ∈ N, n = 2r and a, b ∈ Fn with char(F) 6= 2.
Result: a Í b ∈ Fn such that ∆(a)∆(b) = ∆(a Í b).

1 c← vector of length n, initialized with null elements;
2 c̃← vector of length n, initialized with null elements;
3 Compute ã← aHr via Algorithm 10 ;
4 Compute b̃← bHr via Algorithm 10 ;
5 for j← 0 to n− 1 do
6 c̃j ← ãjb̃j ;
7 end
8 Compute c← c̃Hr via Algorithm 10;
9 c← 2−rc;

10 return c;

The fast Walsh-Hadamard transform itself is not immediately possible on fields of
characteristic 2, since it depends on Sylvester-Hadamard matrices which must contain a
primitive square root of unity. Yet the FWHT algorithm can be lifted to characteristic 0,
namely, from F2 = Z/2Z to Z, or more generally from F2N = (Z/2Z)[x]/P(x) (for some
irreducible P(x) of degree N) to Z[x]. Algorithm 11 can then be applied, and its output
mapped back to the relevant binary field by modular reduction. This incurs a space ex-
pansion by a logarithmic factor, though. Each bit from F2 is mapped to an intermediate
value that can occupy as much as 3r+ 1 bits; correspondingly, each element from F2N is
mapped to N intermediate values that can occupy as much as (3r + 1)N bits. Thus the
component-wise multiplication in Algorithm 11 becomes more complicated to implement
for large N. However, the method remains very efficient for the binary case as long as
each expanded integer component fits a computer word. For a typical word size of 32
bits and each binary component being expanded by a factor of 3r + 1, this means that
blocks as large as 1024 × 1024 can be tackled efficiently. On more restricted platforms
where the maximum available word size is 16 bits, dyadic blocks of size 32× 32 can still
be handled with relative ease.

3.3 — Karatsuba Multiplication

In this section, we propose a method that is inspired by Karatsuba’s algorithm for the
multiplication of two integers [KO62]. Let us denote by a0 and a1, respectively, the first
and second halves of a, i.e.:

a0 =
(
a0,a1, . . . ,an

2 −1
)

a1 =
(
an

2
,an

2 +1, . . . ,an−1
)
.

(3.2)

The same notation is used for b0 and b1 and c0 and c1, corresponding to the halves
of b and c. Some straightforward computations in char(F) = 2 show that the following

30 CHAPTER 3. FAST MULTIPLICATION AND INVERSION IN DYADIC MATRICES

relations hold for ∆(c) = ∆(a)∆(b):

c0 = a0 Í b0 + a1 Í b1

c1 = (a0 + a1) Í (b0 + b1) + c0
(3.3)

which compute the result with 3 dyadic convolutions rather than the obvious 4, as ob-
served by Karatsuba [KO62] in the context of polynomial and long integer multiplication.

The iterative application of Equation 3.3 allows to compute multiplications between
dyadic matrices of any size. Let us denote by C(2z)

mul and C(2z)
sum the complexities of a mul-

tiplication and a sum between two signatures of length 2z. For the sum of two dyadic
signatures of size 2z we have:

C
(2z)
mul = 2z · Csum, (3.4)

where Csum again denotes the complexity of a sum in the finite field. The complexity of
this algorithm can thus be estimated as:

CKar = 3 · C(2r−1)
mul + 4 · C(2r−1)

sum

= 3 · C(2r−1)
mul + 4 · 2r−1 · Csum

= 3 ·
(

3 · C(2r−2)
mul + 4 · C(2r−2)

sum

)
+ 4 · 2r−1 · Csum

= 3
(

3 · C(2r−2)
mul + 4 · 2r−2 · Csum

)
+ 4 · 2r−1 · Csum

= 32 · C(2r−2)
mul + 4 ·

(
3 · 2r−2 + 2r−1

)
Csum

= 33 · C(2r−3)
mul + 4 ·

(
32 · 2r−3 + 3 · 2r−2 + 2r−1

)
Csum

= · · ·

= 3r · Cmul + 4 ·

 r∑
j=1

3j−12r−j

 · Csum

= 3r · Cmul +
4
3
· 2r ·

 r∑
j=1

(
3
2

)j · Csum (3.5)

Taking into account the well known sum of a geometric series, we have:

r∑
j=1

(
3
2

)j
= −1 +

r∑
j=0

(
3
2

)j
= −1 +

1 − (3
2)
r+1

1 − 3
2

=
3r+1

2r
− 3. (3.6)

Considering this result, equation (3.5) leads to:

CKar = 3r · Cmul + 4 · (3r − 2r) · Csum (3.7)

3.4 — Comparisons

Table 3.1 shows the number of cycles for an implementation of the methods described
in the previous subsections, i.e., standard multiplication, Karatsuba multiplication and

3.5. EFFICIENT INVERSION OF DYADIC AND QUASI-DYADIC MATRICES 31

dyadic convolution. We remark that the dyadic signatures are vectors of size 2r and we
used two different fields F26 and F28 with x6+x5+1 and x8+x4+x3+x2+1 as irreducible
polynomials. However, the implementation code is generic and it is easily modifiable for
other parameters such as different fields or r.

The implementation was developed in the C language. In all cases, we use no opti-
mizations apart from the optimization from the GCC compiler (“-O3”). The GCC version
used was 8.3.0, the code was compiled for the processor Intel(R) Core(TM) i5-5300UCPU
@ 2.30GHz with 16GB of memory and operating system Arch linux version 2018.05.01
with kernel 4.19.45. We ran 100 times each piece of code and computed the average
value of all measurements; to obtain the number of cycles, we used the file “cpucycles.h”
from SUPERCOP2.

Table 3.1: Comparison between multiplication methods. The numbers state the cycles used for one dyadic
multiplication.

Standard Karatsuba Dyadic Convolution

F26
r = 5 18, 214 5, 850 11, 262
r = 6 68, 761 14, 109 19, 857

F28
r = 5 24, 583 6, 992 11, 666
r = 6 98, 706 18, 769 20, 772

3.5 — Efficient Inversion of Dyadic and Quasi-Dyadic Matrices

In this section we propose an efficient algorithm for computing the inverse of quasi-
dyadic matrices. The algorithm is targeted to matrices that are not fully dyadic (even
though, obviously, they have to be square matrices). While it is of course possible to
apply our procedure to fully dyadic matrices, these can in general be inverted much more
easily, as we will see next.

To begin, remember that by definition a quasi-dyadic matrix (Definition 2.6) is an
element of ∆ (Rn)d1×d2 .

3.5.1 – Dyadic Matrices. The inverse of a dyadic matrix (i.e. d1 = d2 = 1) can be
efficiently computed, using only the signature, as described by the following Lemma.

Theorem 3.6. Let n = 2r for r ∈ N and let ∆(a) ∈ Rn×n, with char(R) 6= 2, be a
dyadic matrix with signature a. Then the inverse ∆(a)−1 is the dyadic matrix ∆(b), for
b = 1

2r b̃Hr, where b̃ is the vector such that diag(b̃) = [diag (aHr)]
−1.

Proof. By definition we have∆(b)∆(a) = In = ∆([1, 0, . . . , 0]). The diagonal form of In
corresponds to the first row of the product InHr, and so it is equal to the first row of Hr,
that is the length-n vector made of all ones. According to Corollary 3.5, we can write:

diag(bHr) diag(aHr) = diag([1, 1, . . . , 1]).

We then define aHr = [λ0, λ1, . . . , λn−1], and obtain:

diag(bHr) = diag([1, 1, . . . , 1])(diag(aHr))−1 = diag([λ−1
0 , λ−1

1 , . . . , λ−1
n−1]).

2https://bench.cr.yp.to/supercop.html

32 CHAPTER 3. FAST MULTIPLICATION AND INVERSION IN DYADIC MATRICES

Because of Lemma 3.4, we finally have:

b = (diag(aHr))−1H−1
r = 1

2r (diag(aHr))−1Hr.

As we mentioned before, the above Lemma yields a very simple way for computing the
inverse of a dyadic matrix: given a signature a, we just need to compute its diagonalized
form as aHr, compute the reciprocals of its elements and put it in a vector b̃. Finally, the
inverse of ∆(a) can be obtained as 1

2r b̃Hr. This property also leads to a very simple way
to check the singularity of ∆(a): if its diagonalized form contains some null elements,
then it is singular.

We now focus on the case of dyadic matrices over a field F with characteristic 2. One
can show by induction that in such a case a dyadic matrix ∆(a) of dimension n satisfies
∆(a)2 = (

∑
i ai)

2I, and hence its inverse, when it exists, is ∆(a)−1 = (
∑
i ai)

−2∆(a),
which can be computed in O(n) steps since it is entirely determined by its first row. It
is equally clear that det∆(a) = (

∑
i ai)

n, which can be computed with the same com-
plexity (notice that raising to the power of n = 2r only involves r squarings). Basically,
verifying whether a dyadic matrix has full rank or not can be easily done by checking
whether the sum of the elements of the signature equals 0.

3.5.2 – Quasi-Dyadic Matrices. Consider a quasi-dyadic matrix M. Since the matrix
has to be square, we have d1 = d2 = d, and the matrix has dimension dn × dn. Such
a matrix can be compactly represented just by the signatures of the dyadic blocks. To
simplify notation, we can denote the signature of the dyadic-block in position (i, j) as
m̂i,j, and store all such vectors in a matrix M̂ ∈ Rd×dn:

M̂ =


m̂0,0 m̂0,1 · · · m̂0,d−1

m̂1,0 m̂1,1 · · · m̂1,d−1
...

...
. . .

...
m̂d−1,0 m̂d−1,1 · · · m̂d−1,d−1

 . (3.8)

We focus again on the special case of quasi-dyadic matrices over a field F with char-
acteristic 2.

The LUP decomposition is a method which factorizes a matrix M as LUP, where L and
U are lower triangular and upper triangular matrices, respectively, and P is a permutation.
Exploiting this factorization, the inverse of M can thus be expressed as:

M−1 = P−1U−1L−1. (3.9)

The advantage of this method is that the inverses appearing in (3.9) can be easily com-
puted, because of their particular structures. In fact, the inverse of an upper (lower)
triangular matrix is obtained via a simple backward (forward) substitution procedure,
while the inverse of P is its transpose.

In some cases, applying a block-wise LUP decomposition might lead to some com-
plexity reduction; for instance, see [PS17] for the inversion of a sparse matrix. Here,
we consider the case of a quasi-dyadic matrix; the corresponding procedure is shown in
Algorithm 12.

Our proposed procedure consists in using a block decomposition, which works directly
on the signatures, in order to exploit the simple and efficient algebra of dyadic matrices.

3.5. EFFICIENT INVERSION OF DYADIC AND QUASI-DYADIC MATRICES 33

The operations in Algorithm 12 only refer to the signatures in M̂: for instance, the expres-
sion m̂i,jm̂i,l means the product between the dyadic matrices having as signatures m̂i,j and
m̂i,l, i.e., ∆(m̂i,j Í m̂i,l). This choice may result in some abuse of notation, but is useful
to emphasize the fact that, as we have explained in the previous sections, operations with
dyadics can be efficiently computed just by taking into account their signatures. It can
be easily shown that, for a quasi-dyadic matrix, its factors L, U and P are in quasi-dyadic
form as well: as we have done for the matrix M, we refer to their compact representations
as L̂, Û and P̂, respectively.

Algorithm 12: LUP Decomposition of a Quasi-Dyadic Matrix

Data: d, r ∈ N, n = 2r and M̂ ∈ Fd×dn with char(F) = 2.
Result: M̂ ∈ Fd×dn, P̂ ∈ Nd.

1 P̂← [0, 1, . . . ,d− 1];
2 u← 0;
3 for j← 0 to d− 1 do
4 Update u, M̂ and P̂ via Algorithm 13 /* Pivoting of the signatures

in the j-th column */;
5 if u = 0 then
6 return u /* M̂ is singular */;
7 end
8 for i← j+ 1 to d do
9 m̂i,j ← m̂i,jm̂−1

j,j ;
10 end
11 for i← j+ 1 to d− 1 do
12 for l← j+ 1 to d− 1 do
13 m̂i,l ← m̂i,l + m̂i,jm̂j,l;
14 end
15 end
16 end
17 return M̂, P̂;

Algorithm 12 takes as input a matrix M̂, as in (3.8), and computes its LUP factoriza-
tion; outputs of the algorithm are the modified matrix M̂, having as elements the ones of
its factors L̂ and Û, and the permutation P̂. As in (3.8), we denote as m̂i,j the signature
in position (i, j) in the output matrix M̂. The matrices L̂ and Û can then be expressed as:

L̂ =


1̂ 0̂ 0̂ · · · 0̂

m̂1,0 1̂ 0̂ · · · 0̂
m̂2,0 m̂2,1 1̂ · · · 0̂

...
...

...
. . .

...
m̂d−1,0 m̂d−1,1 m̂d−1,2 · · · 1̂

 , (3.10)

34 CHAPTER 3. FAST MULTIPLICATION AND INVERSION IN DYADIC MATRICES

Û =


m̂0,0 m̂0,1 m̂0,2 · · · m̂0,d−1

0̂ m̂1,1 m̂1,2 · · · m̂1,d−1

0̂ 0̂ m̂2,2 · · · m̂2,d−1
...

...
...

. . .
...

0̂ 0̂ 0̂ · · · m̂d−1,d−1

 (3.11)

where 1̂ and 0̂ denote, respectively, the signature of the identity matrix and the one of
the null matrix (i.e. the length-k vectors [1, 0, . . . , 0] and [0, 0, . . . , 0]).

The matrix P̂ is represented by a length-d vector [p0,p1, . . . ,pd−1], containing a per-
mutation of the integers [0, 1, . . . ,d − 1]; the rows of M̂ get permuted according to the
elements of P̂. In particular, the elements of P̂ are obtained through a block pivoting
procedure, which is described in Algorithm 13.

Algorithm 13: Block pivoting

Data: d, j, r ∈ N, n = 2r, P̂ ∈ Nd and M̂ ∈ Fd×dn with char(F) = 2.
Result: u ∈ N as 1 if it needs continue pivoting or 0 otherwise.

1 u← 0;
2 i← j;
3 while i 6 d− 1 do
4 w← sum(m̂i,j) /* Sum of the elements in m̂i,j */;
5 if w = 0 then
6 z← pj;
7 pj ← pi;
8 pi ← z;
9 for l← 0 to d− 1 do

10 z← m̂j,l;
11 m̂j,l ← m̂i,l;
12 m̂i,l ← z;
13 i← i+ 1;
14 end
15 else
16 i← d;
17 u← 1;
18 end
19 end
20 return u;

The function of block pivoting in Algorithm 13 takes as input M̂, P̂ and an integer j,
and searches for a pivot (i.e., a non singular signature) in the j-th column of M̂, starting
from m̂j,j, and places it in position (j, j). As the procedure goes on, every time a singu-
lar signature is tested, the rows of M̂ get permuted; the elements of P̂ are accordingly
modified. We give up on inverting M̂ if the j-th column contains only singular blocks.

We point out that, for the matrices we are considering, we expect Algorithm 12 to be
particularly efficient. First of all, as we have already said, this is due to the possibility of
efficiently performing operations involving dyadic matrices. In addition, the dyadic struc-
ture should also speed-up the pivoting procedure. For our applications, we can consider
a signature in M̂ as a collection of k random elements picked from F2m : thus, their sum

3.5. EFFICIENT INVERSION OF DYADIC AND QUASI-DYADIC MATRICES 35

can be assumed to be a random variable with uniform distribution among the elements
of the field F2m . So, the probability of it being equal to 0, which corresponds to the prob-
ability of the corresponding signature to be singular, equals 2−m. This probability gets
lower asm increases: this fact means that the expected number of operations performed
by Algorithm 13 should be particularly low. Basically, most of the times the function will
just compute the sum of the elements in m̂j,j and verify that it is nonzero.

Once the factorization of M̂ has been obtained, we just need to perform the computa-
tion of M−1 through (3.9). Since the inverse of a triangular matrix maintains the original
triangular structure, the computation of the inverses L̂−1 and Û−1 can be efficiently per-
formed. A possible way for computing these matrices is to store the elements of both
matrices in just one output matrix T̂. Those operations are made in Algorithm 14.

In Algorithm 14, the matrix Îd is the compact representation of a dn × dn identity
matrix, and so is composed of signatures δi,j1̂, where δi,j denotes the Kronecker delta.

Algorithm 14: Computation of the inverses L̂−1 and Û−1 as just one output
matrix T̂.

Data: d, r ∈ N, n = 2r and M̂ ∈ Fd×dn with char(F) = 2.
Result: T̂ ∈ Fd×dn as L̂−1 and Û−1.

1 T̂← Îd;
2 for j← 0 to d− 1 do
3 for i← j+ 1 to d− 1 do
4 for l← j to i− 1 do
5 t̂i,j ← t̂i,j + m̂i,kt̂k,j;
6 end
7 end
8 for i← j to d− 1 do
9 for l← j to i− 1 do

10 t̂j,i ← t̂j,i + m̂k,it̂j,k;
11 end
12 t̂j,i ← t̂j,im̂−1

i,i ;
13 end
14 end
15 return T̂

If we denote as t̂i,j the signature in position (i, j), we have:

L̂−1 =


1̂ 0̂ 0̂ · · · 0̂

t̂1,0 1̂ 0̂ · · · 0̂
t̂2,0 t̂2,1 1̂ · · · 0̂
...

...
...

. . .
...

t̂d−1,0 t̂d−1,1 t̂d−1,2 · · · 1̂

 , (3.12)

36 CHAPTER 3. FAST MULTIPLICATION AND INVERSION IN DYADIC MATRICES

Û−1 =


t̂0,0 t̂0,1 t̂0,2 · · · t̂0,d−1

0̂ t̂1,1 t̂1,2 · · · t̂1,d−1

0̂ 0̂ t̂2,2 · · · t̂2,d−1
...

...
...

. . .
...

0̂ 0̂ 0̂ · · · t̂d−1,d−1

 . (3.13)

These matrix operations will be used in a cryptosystem in Chapter 4.

Chapter 4

DAGS: Key Encapsulation from Dyadic
Generalized Srivastava Codes

As it was mentioned in Chapter 1, code-based cryptography is one of the main mathemat-
ical problems that are safe against quantum computers. The area is largely based on the
Decoding Problem [BMvT78]. Over the years, since McEliece’s seminal work [McE78],
many cryptosystems have been proposed, trying to balance security and efficiency. In par-
ticular, those cryptosystems need to deal with inherent problems such as the large size of
the public keys. In fact, while McEliece’s original cryptosystem, which is based on binary
Goppa codes, still unbroken in principle, it has a key of several hundred kilobytes, which
has effectively prevented its use in many applications. Note that the original parameters
n = 1024 and k = 512 were broken in 2008. 1

There are currently two main trends to deal with this issue, and they both involve
structured matrices: the first is based on “traditional" algebraic codes such as Goppa or
Srivastava codes; the second suggests to use sparse matrices as in LDPC/MDPC codes.
This work builds on the former approach, initiated in 2009 by Berger, Cayrel, Gaborit
and Otmani [BCGO09], who proposed Quasi-Cyclic (QC) codes, and Misoczki and Bar-
reto [MB09], suggesting Quasi-Dyadic (QD) codes instead (later generalized to Quasi-
Monoidic (QM) codes [BLM11]). Both proposals feature very compact public keys due to
the introduction of the extra algebraic structure, but unfortunately this also led to a vul-
nerability. Indeed, Faugère, Otmani, Perret and Tillich [FOPT10] devised a clever attack
(known simply as FOPT) which exploits the algebraic structure to build a system of equa-
tions, which can successively be solved using Gröbner basis techniques. As a result, the
QC proposal is definitely compromised, while the QD/QM approach needs to be treated
with caution. In fact, for a proper choice of parameters, it is still possible to design secure
schemes using for instance binary Goppa codes, or Generalized Srivastava (GS) codes as
suggested by Persichetti in [Per12a].

In this chapter, we present DAGS, a Key Encapsulation Mechanism (KEM) that follows
the QD approach using GS codes. The KEM achieves IND-CCA security following the

1This chapter is based on joint work with Paulo S.L.M. Barreto, Brice Odilon Boidje, Pierre-Louis Cayrel,
Gilbert Ndollane Dione, Kris Gaj, Cheikh Thiécoumba Gueye, Richard Haeussler, Jean Belo Klamti, Ousmane
N’diaye, Duc Tri Nguyen, Edoardo Persichetti, and Jefferson E. Ricardini. The results were published in Jour-
nal of Mathematical Cryptology [BBB+18] and at Code-Based Cryptography Workshop 2019 [BBB+19]. The
acronym DAGS holds for Dyadic GS Codes.

38 CHAPTER 4. DAGS: KEY ENCAPSULATION FROM DYADIC GENERALIZED
SRIVASTAVA CODES

recent framework by Hofheinz, Hövelmanns and Kiltz [HHK17], and features compact
public keys and efficient encapsulation and decapsulation algorithms. One task is to
balance parameters to achieve the most efficient scheme, while at the same time avoiding
the FOPT attack. DAGS tries to find a balance between security and small parameters.

First, we will present the protocol giving specification about the design. Second, we
will show the security of the scheme and the behavior against the known attacks in the
literature at the time of the NIST submission. The proofs and details about the theoretical
security of DAGS are left out here since my coauthors worked on them. They can be found
in [BBB+18]. Third, we will present details about the implementation showing choices
that were made in the project and the implications of those choices and the limitations
and advantages of using DAGS.

After submission to the NIST competition, DAGS, the system this chapter is about,
got attacked and tweaked several times. This chapter follows the three phases of DAGS
chronologically, to give proper credit to the attacks, and includes the attacks and coun-
termeasures that were derived in the later phases.

4.1 — Protocol Specification

4.1.1 – Design Rationale. In this section we introduce the three algorithms that form
DAGS. System parameters are the code length n and dimension k, the values s and t
which define a GS code as seen in Subsection 2.2.4, the cardinality of the base field q
and the degree of the field extension m. In addition, we have k = k ′ + k ′′, where k ′ is
arbitrary and is set to be “small". In practice, the value of k ′ depends on the base field and
is such that a random vector of length k ′ over Fq provides at least 256 bits of entropy.

Let us select randomly non-zero distinct h0 and hj for j = 2l, l = 0, . . . , dlog2 ne− 1.
The key generation process uses the following fundamental equation

1
hi⊕j

=
1
hi

+
1
hj

+
1
h0

(4.1)

to build the vector h = (h0, . . . ,hn−1) of elements of Fqm . This is then used to form u
and v, where u = (u0, . . . ,us−1) and v = (v0, . . . , vn−1). The construction of ui and vi
are the following: ui = 1

hi
+ω and vj = 1

hj
+ 1
h0

+ω for a randomω ∈ Fqm . The vectors

u and v then are used to build a matrix C(u, v) with components Cij = 1
ui+vj

which
we call Cauchy matrix. Each element in the Cauchy matrix is then successively powered
forming several blocks which are superimposed and then multiplied by a random diagonal
matrix. Finally, the resulting matrix is projected onto the base field and row-reduced to
systematic form. The overall process is described below.

4.1.1.1 – Key Generation.
a) Generate h. To do this:

a) Choose random non-zero distinct h0 and hj for j = 2l, l = 0, . . . , dlog2 ne−1.
b) Form the remaining n elements using Equation 4.1.
c) Return s blocks up to length n excluding any block containing zero as entry.

b) Build the Cauchy support. To do this:
a) Choose a random2 offset ω $← Fqm .

2See Subsection 4.1.2 for restrictions about the choice of the offset.

4.1. PROTOCOL SPECIFICATION 39

b) Compute ui =
1
hi

+ω for i = 0, . . . , s− 1.

c) Compute vj =
1
hj

+
1
h0

+ω for j = 0, . . . ,n− 1.

d) Set u = (u0, . . . ,us−1) and v = (v0, . . . , vn−1).

c) Form the Cauchy matrix Ĥ1 = C(u, v) =


1

(u0+v0)
· · · 1

(u0+vn−1)
1

(u1+v0)
· · · 1

(u1+vn−1)

...
...

...
1

(us−1+v1)
· · · 1

(us−1+vn−1)

.

d) Build Ĥi, i = 2, . . . t, by raising each element of Ĥ1 to the power of i.
e) Superimpose blocks Ĥi, for i = 2, . . . t to form matrix Ĥ as:

Ĥ =


Ĥ1

Ĥ2
...
Ĥt

 .

f) Generate vector z by picking dn
s
e random elements zis ∈ Fqm , i = 0, . . . , dn

s
e− 1

and put zis+j = zis for i = 0, . . . , dn
s
e− 1, j = 0, . . . , s− 1.

g) Set yj =


zj

s−1∏
i=0

(ui − vj)
t

 for j = 0, . . . ,n− 1 and y = (y0, . . . ,yn−1).

h) Form H = Ĥ · Diag(z).
i) Project H onto Fq using the co-trace function: call this Hbase.
j) Write Hbase in systematic form (M | In−k).
k) The public key is the generator matrix G = (Ik |MT).
l) The private key is the pair (v,y).
The encapsulation and decapsulation algorithms make use of two hash functions G :

Fk′

q → Fkq and H : Fk′

q → Fk
′

q , the former with the task of generating randomness for
the scheme, the latter to provide “plaintext confirmation" as in [HHK17]. The shared
symmetric key is obtained via another hash function K : Fk′

q → {0, 1}`, where ` is the
desired key length.

4.1.1.2 – Encapsulation.
a) Choosem $← Fk′

q .
b) Compute r = G(m) and d = H(m).
c) Parse r as (ρ ‖ σ) then set µ = (ρ ‖m).
d) Generate error vector e of length n and weight w = st

2 from σ.
e) Compute c = µG+ e.
f) Compute s = K(m).
g) Output ciphertext (c,d); the encapsulated key is s.
The decapsulation algorithm consists mainly of decoding the noisy codeword received

as part of the ciphertext. This is done using the alternant decoding algorithm described
in Algorithm 2 and requires the parity-check matrix to be in alternant form.

40 CHAPTER 4. DAGS: KEY ENCAPSULATION FROM DYADIC GENERALIZED
SRIVASTAVA CODES

4.1.1.3 – Decapsulation.

a) Get parity-check matrix H ′ in alternant form from private key3.
b) Use H ′ to decode c and obtain codeword µ ′G and error e′.
c) Output ⊥ if decoding fails or wt(e′) 6= w.
d) Recover µ′ and parse it as (ρ′ ‖m′).
e) Compute r′ = G(m′) and d′ = H(m′).
f) Parse r′ as (ρ′′ ‖ σ′).
g) Generate error vector e′′ of length n and weight w from σ′.
h) If e′ 6= e′′ ∨ ρ′ 6= ρ′′ ∨ d 6= d′ output ⊥.
i) Else compute s = K(m′).
j) The decapsulated key is s.

Persichetti [Per12b, Chapter 2] shows that the code just defined is a Generalized Sri-
vastava code. DAGS is built upon the McEliece encryption framework using GS Codes
as shown in [Per12b, Chapter 4], with a notable exception. In fact, we incorporate the
“randomized" version of McEliece by [NIKM08] into our scheme. This is extremely ben-
eficial for two distinct aspects: first of all, it allows us to use a much shorter vector m
to generate the remaining components of the scheme, which greatly improves efficiency.
Secondly, it allows us to get tighter security bounds. In fact, a shorter input makes all
the hash functions easy to compute, and minimizes the overhead due to the IND-CCA2
security in the QROM. Note that our protocol differs slightly from the paradigm presented
in [HHK17], in the fact that we do not perform a full re-encryption in the decapsulation
algorithm. Instead, we simply re-generate the randomness and compare it with the one
obtained after decoding. This is possible since, unlike a generic PKE, McEliece decryption
reveals the randomness used, in our case e (and ρ). It is clear that if the re-generated
randomness is equal to the retrieved one, the resulting encryption will also be equal. This
allows us to further decrease computation time.

4.1.2 – Choice ofω. As discussed in the text above, in our scheme we use a standard
alternant decoder. After computing the syndrome of the word to be decoded, the next step
is to recover the Error Locator Polynomial (ELP), by means of the Euclidean algorithm for
polynomial division; the algorithm then proceeds by finding the roots of the ELP. There
is a 1-1 correspondence between these roots and the error positions: in fact, there is an
error in position i if and only if the inverse of xi is a root of the ELP.

Now, the generation of the error vector is random, hence we can assume the proba-
bility of having an error in position i to be around st/2n; since the codes can correct the
maximum number of errors when mst is close to n/2, we can estimate this probability
as 1/4m, which is reasonably low for any nontrivial choice ofm; however, we still argue
that the code is not fully decodable and we now explain how to adapt the key generation
algorithm to ensure that all the xi’s are nonzero.

As part of the key generation algorithm we assign to each xi the value vi, hence it
is enough to restrict the possible choices for ω to the set {α ∈ Fqm |α 6= 1/hi + 1/h0,
i = 0, . . . ,n− 1}. In doing so, we considerably restrict the possible choices for ω but we
ensure that the decoding algorithm works properly.

3See Algorithm 4.3.3.1.

4.2. KNOWN ATTACKS AND PARAMETERS 41

4.2 — Known Attacks and Parameters

We start by briefly presenting the hard problem on which DAGS is based, and then
discuss the main attacks on the scheme and related security concerns.

4.2.1 – Hard Problems from Coding Theory. Most of the code-based cryptographic
constructions are based on the hardness of the following problem, known as the (q-ary)
Syndrome Decoding Problem (SDP).

Problem 1. Given an (n− k)× n full-rank matrix H over Fq, a vector s ∈ Fn−kq , and a
non-negative integer w, find a vector e ∈ Fnq of weight w such that HeT = s if such e
exist.

The corresponding decision problem was proved to be NP-complete in 1978 [BMvT78],
but only for binary codes. In 1994, it was proved that this result holds for codes over all
finite fields ([Bar94], in Russian, and [Bar97, Theorem 4.1]).

In addition, many schemes (including the original McEliece proposal) require the
following computational assumption.

Assumption 4.1. The public matrix output by the key generation algorithm is computa-
tionally indistinguishable from a uniformly chosen matrix of the same size.

The assumption above is historically believed to be true, except for very particular
cases. For instance, there exists a distinguisher (Faugère, Gauthier, Otmani, Perret and
Tillich [FGO+13]) for cryptographic protocols that make use of high-rate Goppa codes
(like the CFS signature scheme [CFS01]). Moreover, it is worth mentioning that the
“classical" methods for obtaining an indistinguishable public matrix, such as the use of
scrambling matrices S and P, are rather outdated and unpractical and can introduce
vulnerabilities to the scheme as per the work in [Str10,STM+08].

4.2.2 – Decoding Attacks. The main approach for solving the SDP is a technique
known as Information Set Decoding (ISD), first introduced by Prange [Pra62]. Among
several variants and generalizations, Peters showed [Pet10] that it is possible to apply
Prange’s approach to generic q-ary codes. Other approaches such as Statistical Decod-
ing [Al-01,Nie11] are usually considered less efficient. Thus, when choosing parameters,
we will focus mainly on defeating attacks on the ISD family.

Peters [Pet11] provides an inital study about non-asymptotic complexity for the ISD
in the binary case, which later on Hamdaoui and Sendrier in [HS13] provides a similar
study. For codes over Fq, instead, a bound is given in [NPC+17], which extends the work
of Peters. For a practical evaluation of the ISD running times and corresponding security
levels, we used Peters’ ISDFQ script [Pet] which analyzes the random choices in the ISD
algorithm and computes the number of iterations.

Quantum Speedup. Bernstein in [Ber10] shows that Grover’s algorithm applies to ISD-
like algorithms, effectively halving the asymptotic exponent in the complexity estimates.
Later, it was proven in [KT17] that several variants of ISD have the potential to achieve a
better exponent, however the improvement was disappointingly away from the factor of 2
that could be expected. In fact, the number of required iterations for running a quantum
version of Stern’s algorithm reduce the factor of square root provide by Grover’s algorithm

42 CHAPTER 4. DAGS: KEY ENCAPSULATION FROM DYADIC GENERALIZED
SRIVASTAVA CODES

as [Ber10] when one tried to combine an advanced quantum information-set decoding.
To be on the safe side, we consider that the best attack quantum attack to take at least
the square root of the time computed with the ISDFQ script.

4.2.3 – Algebraic Attacks. While, as we discussed above, recovering a private matrix
from a public one can in general be a very difficult problem, the presence of extra structure
in the code properties can have a considerable effect in lowering this difficulty.

A very effective structural attack was introduced by Faugère, Otmani, Perret and
Tillich in [FOPT10]. The attack (for convenience simply called FOPT) relies on the prop-
ertyH ·GT = 0 to build an algebraic system, using then Gröbner basis techniques to solve
it and recover the private key. Note that this property is valid for every linear code, but it
is the special properties of structured alternant codes that make the system solvable, as
they contribute to considerably reduce the number of variables.

The attack was originally aimed at two variants of McEliece, introduced respectively
in [BCGO09] and [MB09]. The first variant, using quasi-cyclic codes, was easily broken
in all proposed parameters. The second variant, instead, only considered quasi-dyadic
Goppa codes. In this case, most of the parameters proposed have also been broken,
except for the binary case (i.e. base field F2). This was, in truth, not connected to the
base field per se, but rather depended on the fact that, with a smaller base field, the
authors provided a much higher extension degree m, as they were keeping constant the
value qm = 216. As it turns out, the extension degree m plays a key role in evaluating
the complexity of the attack.

4.2.3.1 – Attack Complexity for DAGS. Following up on their own work, the authors
in [FOPT10] analyze the attack in detail with the aim of evaluating its complexity at least
somewhat rigorously. At the core of the attack, there is an affine bilinear system, which is
derived from the initial system of equations by applying various algebraic relations due to
the quasi-dyadic structure. This bilinear system has nX′ +nY ′ variables, where these are,
respectively, the number of X and Y “free" variables (after applying the relations) of an
alternant parity-check matrix H with Hij = YjXij. Moreover, the degree of regularity (i.e.
the maximal degree of the polynomials appearing during the computation) is bounded
from above by 1 + min (nX′ ,nY ′). It is shown that this number dominates computation
time, and so it is crucial to correctly evaluate it in our case. In fact, for the original
proposal based on Goppa codes [MB09], we have nX′ = n0 − 2 + log2(`), where ` is the
dyadic order and n0 = n/` is the number of dyadic blocks, and nY ′ = m− 1. We report
an excerpt of some numbers from the paper in Table 4.1 below.

It is possible to observe several facts. For instance, in every set of parameters, nX′ �
nY ′ and so nY ′ = m−1 is the most important number here. In other words, the degree of
the extension field is crucial in evaluating the complexity of the attack, as we mentioned
above. As a confirmation, it is easy to notice that all parameters were broken very easily
when this is extremely small (1 in most cases), while the running time scales accordingly
when m grows. In fact, the attack could not be performed in practice on the first set of
parameters (hence the N/A).

The first three groups of parameters are taken from, respectively, Table 2, Table 3 and
Table 5 of the preliminary (unpublished) version of [MB09], while the last group consists
of some ad hoc parameters generated by the FOPT authors. The absence of parameters
from Table 4 of [MB09] stands out: in fact, all of these parameters used F2 as base field

4.2. KNOWN ATTACKS AND PARAMETERS 43

Table 4.1: Details of FOPT applied to Quasi-Dyadic Goppa codes [FOPT10].

q m n k n0 ` nX′ nY ′ Time/Operations

2 16 3584 1536 56 26 60 15 N/A
22 8 3584 1536 56 26 60 7 1,776.3 sec / 234.2 op
24 4 2048 1024 32 26 36 3 0.5 sec / 222.1 op
28 2 1280 768 20 26 24 1 0.03 sec / 216.7 op
28 2 640 512 10 26 14 1 0.03 sec / 215.9 op
28 2 768 512 6 27 11 1 0.02 sec / 215.4 op
28 2 1024 512 4 28 10 1 0.11 sec / 219.2 op
28 2 512 256 4 27 9 1 0.06 sec / 217.7 op
28 2 640 384 5 27 10 1 0.02 sec / 214.5 op
28 2 768 512 6 27 11 1 0.01 sec / 216.6 op
28 2 1280 768 5 28 11 1 0.05 sec / 217.5 op
28 2 1536 1024 6 28 12 1 0.06 sec / 217.8 op
24 4 4096 3584 32 27 37 3 7.1 sec / 226.1 op
28 2 3072 2048 6 29 13 1 0.15 sec / 219.7 op

and thus could not be broken (at least not without very long computations), just like
for the case of the first set. As a result, an updated version of [MB09] was produced
for publication, in which the insecure parameters are removed and only the binary sets
(those of Table 4) appear.

Towards the end of [FOPT10], the authors present a bound on the theoretical com-
plexity of computing a Gröbner basis of the affine bilinear system which is at the core of
the attack. They then evaluate this bound and compare it with the number of operations
required in practice (last column of Table 4.1). The bound is given by

Ttheo ≈
(∑

d1+d2=D
16d1,d26D−1

(
dimRd1,d2 − [td1

1 t
d2
2]HS(t1, t2)

)
dimRd1,d2

)
(4.2)

where D is the degree of regularity of the system, dimRd1,d2 =
(
d1+nX′
d1

)(
d2+nX′
d2

)
and

[td1
1 t

d2
2]HS(t1, t2) indicates the coefficient of the term [td1

1 t
d2
2] in the Hilbert bi-series

HS(t1, t2), as defined in Appendix A of [FOPT10].
As it turns out this bound is quite loose, being sometimes above and sometimes below

the experimental results, depending on which set of parameters is considered. As such, it
is to be read as an approximate indication of the expected complexity of a parameter set,
and it only allows to have a rough idea of the security provided for each set. Nevertheless,
since we are able to compute the bound for all DAGS proposed parameters, we will keep
this number in mind when proposing parameters (Section 4.2.5), to make sure our choices
are at least not obviously insecure.

As a bottomline, it is clear that the complexity of the attack scales somewhat propor-
tionally to the valuem− 1 which defines the dimension of the solution space. The FOPT
authors point out that any scheme for which this dimension is less or equal to 20 should
be within the scope of the attack.

44 CHAPTER 4. DAGS: KEY ENCAPSULATION FROM DYADIC GENERALIZED
SRIVASTAVA CODES

Since GS codes are also alternant codes, the attack can be applied to our proposal
as well. There is, however, one very important difference to keep in mind. In fact, it
is shown in [Per12a] that, thanks to the particular structure of GS codes, the dimension
of the solution space is defined by mt − 1, rather than m − 1. This provides greater
flexibility when selecting parameters for the code, and it allows, in particular, to “rest
the weight" of the attack on two shoulders rather than just one. Thus we are able to
balance the parameters and keep the extension degree m small while still achieving a
large dimension for the solution space. We will discuss parameter selection in detail in
Section 4.2.5 as already mentioned.

4.2.3.2 – Folded Codes. In 2016, an extension of the Faugère, Otmani, Perret and Tillich
(FOPT) attack appeared in [FOP+16]. The authors introduce a new technique called
“folding", and show that it is possible to reduce the complexity of the FOPT attack to the
complexity of attacking a smaller code (the “folded" code), thanks to the strong proper-
ties of the automorphism group of the alternant codes in use. The attack turns out to
be very efficient against Goppa codes, as it is possible to recover a folded code which is
also a Goppa code. As a consequence, it is possible to tweak the attack to solve a differ-
ent, augmented system of equations (named GX,Y ′), rather than the “basic" one which is
aimed at generic alternant codes (called AX,Y ′). Moreover, this can be further refined in
the case of Quasi-Dyadic Goppa codes, leading to a third system of equations referred to
as McEX,Y ′ . In parallel, the authors present a new method called “structural elimination"
that manages to eliminate a considerable number of variables, at the price of an increased
degree in the equations considered. Solving the “eliminated" systems (called respectively
elimAX′,Y ′ , elimGX′,Y ′ and elimMcEX′,Y ′) often proves a more efficient choice, but the
authors do occasionally use the non-eliminated systems when it is more convenient to do
so.

The paper concentrates on attacking several parameters that were proposed for sig-
nature schemes and encryption schemes in various follow-ups of [BCGO09] and [MB09].
The latter includes, among others, some of the parameters presented in Table 4.1. While
codes designed to work for signature schemes turn out to be very easy to attack (due to
their particular nature), the situation for encryption is more complex. The authors are
able to obtain a speedup in the attack times for previously investigated parameters, but
some of the parameters could still not be solved in practice. We report the results be-
low, where we indicate the type of system chosen to be solved, and we keep some of the
previously-shown parameters for ease of comparison.

The authors of [FOPT10] do not report timings for codes that were already broken
with FOPT in negligible time (like all of those where m = 2). Also, we have excluded
from our table parameters that are not relevant to DAGS, such as the quasi-monoidic
codes of [BLM11] (where q is not a power of 2).

This table confirms our intuition that high values of m result in a high number of
operations, and that complexity increases somewhat proportionally to this value. Note
that the last 5 sets of parameters were not broken in practice and the estimated complexity
is always quite high: it is not clear what the authors mean by 6, but it is reasonable to
assume that the actual complexity would not be dramatically smaller than the indicated
value, and thus at least 280 in all cases. Consequently, the claim that parameters with
m− 1 6 20 are “within the scope of the attack" looks now perhaps a bit optimistic.

The fourth set of parameters seem to contradict our intuition, since it was broken in

4.2. KNOWN ATTACKS AND PARAMETERS 45

Table 4.2: Details of folding attack applied to Quasi-Dyadic Goppa codes [FOP+16].

q m n k n0 ` System Folding FOPT

24 4 2048 1024 32 26 elimAX′,Y ′ 0.01 sec 0.5 sec
24 4 4096 3584 32 27 elimAX′,Y ′ 0.01 sec 7.1 sec
22 8 3584 1536 56 26 elimAX′,Y ′ 0.04 sec 1776.3 sec
2 16 4864 4352 152 25 elimMcEX′,Y ′ 18 sec N/A
2 12 3200 1664 25 27 elimMcEX′,Y ′ 6 283.5 op N/A
2 14 5376 3584 42 27 elimMcEX′,Y ′ 6 296.1 op N/A
2 15 11264 3584 22 29 elimMcEX′,Y ′ 6 2146 op N/A
2 16 6912 2816 27 28 elimMcEX′,Y ′ 6 2168 op N/A
2 16 8192 4096 32 28 elimMcEX′,Y ′ 6 2157 op N/A

practice with relative ease even though m = 16. However, it is possible to see that this
is a code with a ridiculously high rate (k/n is very close to 1) and in particular, the very
large number of blocks n0 clearly stands out. We remark that this set of parameters was
chosen by the attack authors to demonstrate the efficiency of the attack and in practice
such a poor choice of parameters would never be considered. Nevertheless, it gives us
the confirmation (if needed) that high-rate codes are a bad choice not only for ISD-like
attacks, but for structural attacks also.

The authors of [FOPT10] did not present any explicit result against GS codes and,
in particular, it is not known whether a folded GS code is still a GS code. Thus, the
attack in this case is limited to solving the generic system AX,Y ′ (or elimAX′,Y ′) and does
not benefit from the speedups which are specific to (binary) Goppa codes. For these
reasons, and until an accurate complexity analysis is available, we choose to attain to the
latest measurable guidelines and choose our parameters such that the dimension of the
solution space for the algebraic system is strictly greater than 20. We then compute the
bound given by Equation (4.2) and report it as an additional indication of the expected
complexity of the attack.

4.2.4 – The Barelli-Couvreur Attack. The attack makes use of a novel construction
called Norm-Trace Codes [BC18]. As the name suggests, these codes are the result of the
application of both the Trace and the Norm operation to a certain support vector, and they
are alternant codes. In particular, they are subfield subcodes of Reed-Solomon codes. The
construction of these codes is given explicitly only for the specific case m = 2 (as is the
case in all DAGS parameters), i.e. the support vector has components in Fq2 , in which
case the norm-trace code is defined as

NT(x) = 〈1, Tr(x), Tr(αx),N(x)〉,

where α is an element of trace 1.
The main idea is that there exists a specific norm-trace code that is the conductor of

the secret subcode into the public code. By “conductor" the authors refer to the largest
code for which the Schur product (i.e. the component-wise product of all codewords,
denoted by ?) is entirely contained in the target, i.e.

Cond(D,C) = {u ∈ Fnq : u ?D ⊆ C}.

46 CHAPTER 4. DAGS: KEY ENCAPSULATION FROM DYADIC GENERALIZED
SRIVASTAVA CODES

The authors present two strategies to determine the secret subcode. The first strategy
is essentially an exhaustive search over all the codes of the proper co-dimension. This co-
dimension is given by 2q/s, since s is the size of the permutation group of the code, which
is non-trivial in our case due to the code being quasi-dyadic. While such a brute force
in principle would be too expensive, the authors present a few refinements that make it
feasible, which include an observation on the code rate of the codes in use, and the use of
shortened codes. The second strategy, instead, consists of solving a bilinear system, which
is obtained using the parity-check matrix of the public code and treating as unknowns the
elements of a generator matrix for the secret code (as well as the support vector x). This
system is solved using Gröbner bases techniques, and benefits from a reduction in the
number of variables similar to the one performed in FOPT, as well as the refinements
mentioned above (shortened codes).

In both cases, it is easy to deduce that the two parameters q and s are crucial in
determining the cost of running this step of the attack, which dominates the overall cost.
In fact, the authors are able to provide an accurate complexity analysis for the first strategy
which confirms this intuition. The average number of iterations of the brute force search
is given by q2c, where c is exactly the co-dimension described above, i.e. c = 2q/s.
In addition, it is shown that the cost of computing Schur products is 2n3 operations in
the base field. Thus, the overall cost of the recovery step is 2n3q4q/s operations in Fq.
The authors then argue that wrapping up the attack has negligible cost, and that q-ary
operations can be done in constant time (using tables) when q is not too big. All this leads
to a complexity which is below the desired security level for all of the DAGS parameters
that had been proposed in the DAGS submission to NIST. We report these numbers in
Table 4.3.

Table 4.3: Early DAGS parameters.

Security Level q m n k s t w Attack cost in [BC18]

1 25 2 832 416 24 13 104 270

3 26 2 1216 512 25 11 176 280

5 26 2 2112 704 26 11 352 255

As it is possible to observe, the attack complexity is especially low for the last set
of parameters since the dyadic order s was chosen to be 26, and this is probably too
large to provide security against this attack. Still, we point out that, at the time these
parameters were proposed, there was no indication this was the case, since this attack is
using an entirely new technique, and it is unrelated to the FOPT and folding attacks that
we described in Section 4.2.3.2.

While the attack performs very well against the original DAGS parameter sets, it is
overall not as critical as it appears. In fact, it is shown in Section 5.3 of [BBB+18] how
this can be defeated even by modifying a single parameter, namely the size of the base
field q. This is the case for DAGS_3, where changing this value from 26 to 28 is enough
to push the attack complexity beyond the claimed security level. Updated parameters
were introduced in [BBB+18], and we report them below.

Note that, for DAGS_5, the dyadic order s needed to be amended, too, and the rest
of the code parameters modified accordingly to respect the requirements on code length,
dimension etc. The case of DAGS_1 is a little peculiar. In fact, the theoretical complexity

4.2. KNOWN ATTACKS AND PARAMETERS 47

Table 4.4: DAGS parameters secure against Barelli-Couvreur Attack [BC18].

Security Level q m n k s t w Attack cost in [BC18]

1 26 2 832 416 24 13 104 ≈ 2128

3 28 2 1216 512 25 11 176 ≈ 2288

5 28 2 1600 896 25 11 176 ≈ 2289

of the first attack approach can be made large enough by simply switching from q = 25

to q = 26, similarly to what was done for DAGS_3. With this in mind, and for the sake
of simplicity, [BBB+18] featured this choice of parameters for DAGS_1, as reported in
Table 4.4.

Unfortunately, the attack authors were not able to provide a security analysis for the
second strategy (bilinear system). This is due to the fact that the attack uses Gröbner
based techniques, and it is very hard to evaluate the cost in this case (similarly to what
happened for FOPT). In this case, the only evidence the authors provide is experimental,
and based on running the attack in practice on all the parameters. The authors report
running times around 15 minutes for the first set and less than a minute for the last,
while they admit they were not able to complete the execution in the middle case. This
seems to match the evidence from the complexity results obtained for the first strategy,
and suggests a speedup proportional to those. The attack fails to run in practice for the
middle set and it gives the confidence to believe that updated parameters make the attack
infeasible.

4.2.5 – Parameter Selection. To choose our parameters, we keep in mind all the re-
marks from the previous sections about decoding attacks and structural attacks. As we
have just seen, we need to respect the condition mt > 21 to guarantee security against
FOPT. At the same time, to prevent the BC attack q has to be chosen large enough and s
cannot be too big. Finally, for ISD to be computationally intensive we require a sufficiently
large number w of errors to decode: this is given by st/2 according to the minimum dis-
tance of GS codes.

In addition, we tune our parameters to optimize the performance of the implementa-
tion. In this regard, the best results are obtained when the extension degreem is as small
as possible. This, however, requires the base field to be large enough to accommodate
sufficiently big codes (against ISD attacks), since the maximum size for the code length
n is capped by qm − s. Realistically, this means we want qm to be at least 212, and the
optimal choice in this sense seems to be q = 28 (see Section 4.3). Finally, note that s is
constrained to be a power of 2, and that odd values of t seem to offer best performance.

Putting all the pieces together, we are able to present three set of parameters, in Ta-
ble 4.4. These correspond to three of the security levels indicated by NIST (first column),
which are related to the hardness of performing a key search attack on three different
variants of a block cipher, such as AES (with key-length respectively 128, 192 and 256).
As far as quantum attacks are concerned, we claim that ISD with Grover (see above) will
usually require more resources than a Grover search attack on AES for the circuit depths
suggested by NIST (parameter MAXDEPTH). Thus, classical security bits are the bottle-
neck in our case, and as such we choose our parameters to provide 128, 192 and 256 bits
of classical security for security levels 1, 3 and 5 respectively. Furthermore, we show in
Table 4.6 the size of the public key, private key and ciphertext in bytes. Section 4.6 shows

48 CHAPTER 4. DAGS: KEY ENCAPSULATION FROM DYADIC GENERALIZED
SRIVASTAVA CODES

new parameters for DAGS that are the current suggested paramaters secure against the
known attacks.

Table 4.5: Storage requirements in bytes for the parameters in Table 4.4.

Parameter Set Public Key Private Key Ciphertext

DAGS_1 8112 2496 656
DAGS_3 11264 4864 1248
DAGS_5 19712 6400 1632

For practical reasons, during the rest of this thesis we will refer to these parameters
respectively as DAGS_1, DAGS_3 and DAGS_5.

For the above parameters, it is easy to observe that the value nY ′ is always greater or
equal to 21 (it is in fact 25 for DAGS_1), which keeps us clear of FOPT. With respect to
the BC attack, the complexity analysis provided by the authors results in a value of≈ 2126

for DAGS_1 and more than 2288 for the other two sets. Finally, the running cost of ISD
(using Peters’ script) is estimated at 2128, 2192 and 2256 respectively, as desired.

4.3 — Implementation and Performance Analysis

4.3.1 – Components. For DAGS_1, the finite field F26 is built using the polynomial
x6+x+1 and then extended to F212 using the quadratic irreducible polynomial x2+αx+α,
where α is a primitive element of F26 . In particular, we choose α = γ65 where γ is
a primitive element of F212 . This particular choice allows for more efficient arithmetic
using a conversion matrix to switch between F26 and F212 and vice-versa. Similarly, for
DAGS_3 and DAGS_5, we build the base field using x8 + x4 + x3 + x2 + 1 and the
extension field F216 is obtained via x2 + β50x+ β, where β is a primitive element of F28 .
In Section 4.3.4, we will show the basic operations such as multiplication, inversion and
tower field operations. The three main functions from DAGS are defined as:

Key generation: the key generation algorithm key_gen is composed of five main
functions: build_dyadic_signature, build_cauchy_matrix, build_trapdoor, project_H_on_F_q
and generate_public_key. The first three first functions are in charge of generating the sig-
nature, the Cauchy matrix and generating the private key respectively. The fourth func-
tion consists in the projection of the trapdoor matrix generated in build_trapdoor from
Fqm to Fq. The last function, that is generate_public_key, computes Gauss elimination
and removes the redundancy part of the matrix hence generating the public key.

Encapsulation: the encapsulation algorithm is essentially composed of the function
encapsulation in the file encapsulation.c, where it computes the expansion of the message,
generation of the error vector and the McEliece-like encryption. In the end, the function
computes the hash function K to get the shared secret.

Decapsulation: the decapsulation algorithm consists mainly of the function decap-
sulation in the file decapsulation.c, where we essentially run the decoding algorithm, the
computation of the error vector, few comparisons and computation of hash functions. In
the end, we compute the hash function K to get the shared secret.

4.3.2 – Randomness Generation. The randomness used in our implementation is
provided by the NIST API. It uses AES as a PRNG, where NIST chooses the seed in order
to have a controlled environment for tests. We use this random generator to obtain our

4.3. IMPLEMENTATION AND PERFORMANCE ANALYSIS 49

input message m, after which we calculate G(m) and H(m), where G is an expansion
function and H is a hash function. In practice, we compute both using the SHAKE256
function [Div15] from the Keccak family. To generate a low-weight error vector, we take
part of G(m) as a seed σ. We use again SHAKE256 to expand the seed into a string of
length n, then transform the latter into a fixed-weight string using a deterministic func-
tion.

4.3.3 – Efficient Private Key Reconstruction and Decoding. As mentioned in Sec-
tion 4.1.1, in our scheme we use a standard alternant decoder (Step 2 of Algorithm
4.1.1.3), which requires the input to be a matrix in alternant form, i.e. H ′ij = yjx

i
j for

i = 0, . . . , st− 1 and j = 0, . . . ,n− 1. The first step consists of computing the syndrome
of the received word, H ′cT . Now, defining the whole alternant matrix H ′ as private
key would require storing stn elements of Fqm , leading to huge key sizes. It would be
possible to store as private key just the defining vectors u, v and z, and then compute
the alternant form during decapsulation. Doing so would drastically reduce the private
key size, but would also significantly slow down the decapsulation algorithm. Thus we
implemented the following hybrid approach. We use u, v and z to compute the vector
y during key generation and store (v,y) as private key, which still results in a compact
size. Then, we complete the computation of the alternant form in the decapsulation al-
gorithm. To avoid unnecessary overhead, we incorporate this computation together with
the syndrome computation. The process is detailed as follows.

4.3.3.1 – Alternant-Syndrome Computation.
a) Input received word c to be decoded.
b) Compute the vector s = Diag(y) · cT .
c) Form intermediate matrix H̃. To do this:

a) Set first row equal to s.
b) Obtain row i, for i = 1, . . . , st − 1, by multiplying the j-th element of row
i− 1 by vj, for j = 0, . . . ,n− 1.

d) Sum elements in each row and output resulting vector.

4.3.4 – Operations in Fqm .

4.3.4.1 – Arithmetic operations. In the first version of DAGS the base field multiplica-
tions were done using tables, i.e., log and anti-log tables as shown in [DHF+18]. However,
those types of operations can be exploited by side-channel attacks such as cache, timing
or fault attacks. It is possible to avoid that by computing the multiplication every time
that it is required. Listing 4.1 shows how to compute the multiplication of two elements
in F28 and perform the reduction by f(x) = x8 + x4 + x3 + x2 + 1, for a larger q, such
as q = 216, it is possible to use the same technique as well. For other fields one needs
to just take care of using all the bits necessary and changing the irreducible polynomial.
However, for big fields such as F2163 the multiplication and reduction can be quite costly,
see [BCP18] for more details.

1 #inc lude <s t d i n t . h>
2 typedef u in t16_t gf ;
3 gf gf_q_m_mult (g f in0 , g f in1) {

50 CHAPTER 4. DAGS: KEY ENCAPSULATION FROM DYADIC GENERALIZED
SRIVASTAVA CODES

4 gf reduct ion = 0;
5 gf tmp = 0;
6 gf t0 = in0 , t1 = in1 ;
7 i n t i ;
8 //M u l t i p l i c a t i o n
9 tmp = 0;

10 f o r (i = 0; i < 8; i++){
11 tmp =̂ (t0 *(t1 & (1 << i))) ;
12 }
13 // f i r s t and second s t ep s of reduct ion
14 f o r (i=0; i < 2; i++){
15 reduct ion = (tmp >> 8) & 0x7F ; // t h i s grabs b i t s 8−14
16 tmp = tmp & 0xFF ; // t h i s grabs b i t s 0−7
17 tmp =̂ reduct ion ;
18 tmp =̂ reduct ion << 2;
19 tmp =̂ reduct ion << 3;
20 tmp =̂ reduct ion << 4;
21 }
22

23 re turn tmp ;
24 }

Listing 4.1: Multiplication of two elements in F2[x]/(x
8 + x4 + x3 + x2 + 1)

As showed in Section 4.1.1 in the overview of the protocol, it is possible to notice that
one basic and important operation for DAGS is inversion since the vectors u, v,y and h
are inverses in Fqm . Fortunately, since we are in Fqm we can easily compute the inverse
of an element a ∈ Fqm as a−1 = aq

m−2. The inverse operation can be implemented as
squarings and multiplications as shown in Listing 4.2 where we perform the inverse of
elements in F28 , a similar approach can be applied for F26 , F212 and F216 .

1 #inc lude <s t d i n t . h>
2 typedef u in t16_t gf ;
3 gf g f_ inv (gf in) {
4 gf tmp_11 ;
5 gf tmp_111 ;
6 gf tmp_1111 ;
7

8 gf out = in ;
9 out = g f_ sq r (out) ; //a 2̂

10 tmp_111 = out ; //a 2̂
11 tmp_11 = gf_mult (out , in) ; //a^2 a = a 3̂
12

13 out = g f_ sq r (tmp_11) ; // (a^3)̂ 2 = a 6̂
14 out = g f_ sq r (out) ; // (a^6)̂ 2 = a^12
15 tmp_111 = gf_mult (out , tmp_11) ; //a^12 a 3̂ = a^15
16

17 out = g f_ sq r (tmp_111) ; // (a^15)̂ 2 = a^30

4.3. IMPLEMENTATION AND PERFORMANCE ANALYSIS 51

18 out = g f_ sq r (out) ; // (a^30)̂ 2 = a^60
19

20 tmp_1111 = gf_mult (out , tmp_111) ; // (a^60) a 3̂ = a^63
21

22 out = g f_ sq r (tmp_1111) ; // (a^63)̂ 2 = a^126
23 out = gf_mult (out , in) ; // (a^126) a = a^127
24 out = g f_ sq r (out) ; // (a^127)̂ 2 = a^254
25 re turn out ;
26

27 }
Listing 4.2: Inversion of one element in F28

4.3.4.2 – Representation operations. Two important operations that occur on key gen-
eration and decapsulation on DAGS, are the projection of elements from Fqm to elements
in Fq and vice-versa. In the implementation, we called those operations as relative field
representation and absolute field representation where relative field representation means
Fqm to elements in Fq and absolute field representation means Fq to elements in Fqm .
Mathematically, those operations are cheap since they just change the representation of
the basis by a linear mapping. However, we remind the reader that we need to perform
this operations in constant-time and fast since this operations can leak sensitive informa-
tion. For solving this, we present Listings 4.3 and 4.4 for the example of Fq = F28 and
F216 ≡ F28 [x]/(x2 + x+ α).

1 #inc lude <s t d i n t . h>
2 typedef u in t16_t gf ;
3 gf r e l a t i v e _ f i e l d _ r e p r e s e n t a t i o n (gf a , i n t k) {
4 gf x [extens ion] = {0} ;
5 u in t8_ t b_0_t = a & 0x1 ;
6 u in t8_ t b_1_t = (a & 0x2) >> 1;
7 u in t8_ t b_2_t = (a & 0x4) >> 2;
8 u in t8_ t b_3_t = (a & 0x8) >> 3;
9 u in t8_ t b_4_t = (a & 0x10) >> 4;

10 u in t8_ t b_5_t = (a & 0x20) >> 5;
11 u in t8_ t b_6_t = (a & 0x40) >> 6;
12 u in t8_ t b_7_t = (a & 0x80) >> 7;
13 u in t8_ t b_8_t = (a & 0x100) >> 8;
14 u in t8_ t b_9_t = (a & 0x200) >> 9;
15 u in t8_ t b_10_t = (a & 0x400) >> 10;
16 u in t8_ t b_11_t = (a & 0x800) >> 11;
17 u in t8_ t b_12_t = (a & 0x1000) >> 12;
18 u in t8_ t b_13_t = (a & 0x2000) >> 13;
19 u in t8_ t b_14_t = (a & 0x4000) >> 14;
20 u in t8_ t b_15_t = (a & 0x8000) >> 15;
21

22

23 u in t8_ t A = b_5_t ^ b_9_t ^ b_11_t ^ b_12_t ^ b_13_t ^ b_15_t ;
24 u in t8_ t B = b_2_t ^ b_3_t ^ b_4_t ^ b_5_t ;

52 CHAPTER 4. DAGS: KEY ENCAPSULATION FROM DYADIC GENERALIZED
SRIVASTAVA CODES

25 u in t8_ t C = b_6_t ^ b_8_t ;
26 u in t8_ t D = b_7_t ^ b_9_t ;
27 u in t8_ t E = b_10_t ^ b_11_t ;
28

29 u in t8_ t b_4 = C ^ D ^ b_10_t ; // 4
30 u in t8_ t b_11 = b_5_t ^ b_6_t ^ E ^ b_15_t ; // 4
31 u in t8_ t b_9 = b_3_t ^ b_8_t ^ A; // 7
32 u in t8_ t b_5 = b_4_t ^ b_4 ^ A; // 8
33 u in t8_ t b_6 = b_4 ^ b_12_t ^ b_14_t ; // 6
34 u in t8_ t b_15 = b_4 ^ b_6_t ^ b_11_t ^ b_15_t ; // 5
35 u in t8_ t b_3 = b_3_t ^ b_6_t ^ b_8_t ^ b_9_t ^ b_11 ; // 6
36 u in t8_ t b_13 = b_4 ^ E ^ b_5_t ^ b_13_t ; // 6
37 u in t8_ t b_10 = b_2_t ^ b_4_t ^ b_11_t ^ b_14_t ^ b_15_t ; // 4
38 u in t8_ t b_12 = B ^ b_4 ^ b_4_t̂ b_8_t ^ b_12_t ^ b_10 ; // 9
39 u in t8_ t b_1 = B ^ b_8_t ^ b_11_t ^ b_13_t ^ b_14_t ; // 7
40 u in t8_ t b_0 = E ^ b_0_t ^ b_8_t ^ b_9_t ^ b_12_t ; // 5
41 u in t8_ t b_2 = C ^ b_4_t ^ b_11_t ^ b_13_t ^ b_14_t ; // 5
42 u in t8_ t b_14 = C ^ b_4_t ^ b_7_t ^ b_12_t ^ b_13_t ^ b_14_t ^

b_15_t ; // 7
43 u in t8_ t b_7 = D ^ b_5_t ^ b_8_t ^ b_13_t ^ b_14_t ^ b_15_t ;

// 6
44 u in t8_ t b_8 = B ^ b_5_t ^ b_1_t ^ b_7_t ^ b_10_t ^ b_12_t ^

b_13_t ^ b_15_t ; // 8
45

46 x [0] = (b_0) | (b_1 << 1) | (b_2 << 2) | (b_3 << 3) | (b_4 <<
4) | (b_5 << 5) | (b_6 << 6) | (b_7 << 7) ;

47 x [1] = (b_8) | (b_9 << 1) | (b_10 << 2) | (b_11 << 3) | (b_12
<< 4) | (b_13 << 5) | (b_14 << 6) | (b_15 << 7) ;

48 re turn x [k] ;
49 }

Listing 4.3: Relative field representation from F216 to F28

1 #inc lude <s t d i n t . h>
2 typedef u in t16_t gf ;
3 gf a b s o l u t _ f i e l d _ r e p r e s e n t a t i o n (gf *element) {
4 gf beta = 788;
5 gf tmp1 = 0 , tmp2 = 0 , in0 = element [0] , in1 = element [1] ;
6 uint16_t c t l = 0;
7 f o r (i n t i = 0; i < 8; i++) {
8 gf power = gf_pow_f_q_m (beta , i) ;
9 c t l = cons ta t_ t ime_ i s_no t_equa l_ze ro (in0 & (1 << i)) ;

10 constant_time_mux (c t l , tmp1 ^ power , tmp1) ;
11

12 }
13 f o r (i n t i = 0; i < 8; i++) {
14 gf power = gf_pow_f_q_m (beta , i) ;
15 c t l = cons ta t_ t ime_ i s_no t_equa l_ze ro (in1 & (1 << i)) ;

4.3. IMPLEMENTATION AND PERFORMANCE ANALYSIS 53

16 constant_time_mux (c t l , tmp2 ^ power , tmp2) ;
17 }
18

19 gf tmp_3 = gf_q_m_mult (1 , tmp1) ;
20 gf tmp_4 = gf_q_m_mult (2 , tmp2) ;
21

22 gf r e s u l t = tmp_3 ^ tmp_4 ;
23 re turn r e s u l t ;
24

25 }

Listing 4.4: absolute field representation from F28 to F216

4.3.5 – Time and Space Requirements. The implementation is in ANSI C, as re-
quested by the NIST “call of proposals” for the reference implementation. For the mea-
surements we used a processor x64 Intel core i5-5300U@2.30GHz with 16GiB of RAM
compiled with GCC version 8.2.120181127 without any optimization and running on
Arch Linux.

We start by considering space requirements. In Figure 4.1 we recall the flow between
two parties Maria and João in a standard Key Exchange protocol derived from a KEM.

Maria João
(pk, sk)← KEM.KeyGen

pk

(k, c)← KEM.encaps(pk)

c

k/⊥ ← KEM.decaps(c, sk)

Shared key := k

Figure 4.1: KEM-based Key Encapsulation flow

When instantiated with DAGS, the public key is given by the generator matrix G. The
non-identity block MT is k× (n − k) = k×mst and is dyadic of order s, thus requires
only kmst/s = kmt elements of the base field for storage. The private key is simply the
pair (v,y), consisting of 2n elements of Fqm . Finally, the ciphertext is the pair (c,d),
that is, a q-ary vector of length n plus 256 bits. This leads to the measurements (in bytes)
in Table 4.6.

Note that in our reference code, which is not optimized, we currently allocate a full
byte for each element of F26 and two bytes for each element of F212 thus effectively wasting
some memory. However, we expect to be able to represent elements more efficiently,
namely using three bytes to store either four elements of F26 or two elements of F212 . The
measurements in Tables 4.6 and 4.7, above, are taken with respect to the latter method.
This is not a problem for DAGS_3 and DAGS_5, obviously.

54 CHAPTER 4. DAGS: KEY ENCAPSULATION FROM DYADIC GENERALIZED
SRIVASTAVA CODES

Table 4.6: Storage Requirements in bytes

Parameter Set Public Key Private Key Ciphertext

DAGS_1 8112 2496 656
DAGS_3 11264 4864 1248
DAGS_5 19712 6400 1632

Table 4.7: Communication Bandwidth in bytes.

Message
Flow

Transmitted
Message

Size

DAGS_1 DAGS_3 DAGS_5

P1 → P2 G 8112 11264 19712

P2 → P1 (c,d) 656 1248 1632

We now move on to analyzing time measurements. We are using the x64 architec-
ture and our measurements used the “cpucycles.h” from SUPERCOP4. Table 4.8 gives the
results of our measurements represented by the average after running the code 50 times.

Table 4.8: Timings.

Algorithm
Cycles

DAGS_1 DAGS_3 DAGS_5

Key Generation 2,540,311,986 4,320,206,006 7,371,897,084

Encapsulation 12,108,373 26,048,972 96,929,832

Decapsulation 215,710,551 463,849,016 1,150,831,538

4.4 — Advantages and Limitations

We presented DAGS, a Key Encapsulation Mechanism based on Quasi-Dyadic Gener-
alized Srivastava codes. As shown in [BBB+18], DAGS is IND-CCA secure in the Random
Oracle Model, and in the Quantum Random Oracle Model. Thanks to this feature, it is
possible to employ DAGS not only as a key-exchange protocol (for which IND-CPA would
be a sufficient requirement), but also in other contexts such as Hybrid Encryption, where
IND-CCA is of paramount importance.

Like any scheme based on structured algebraic codes, DAGS is susceptible to algebraic
attacks (FOPT etc.); this can be seen as a limitation of the scheme. In fact, to defeat the
attacks, we need to respect stringent conditions on the minimal choices of values for the
scheme, in particular the size of the fields in use (both the base field q and the extension
degreem) and the values t and s. We remark that in many cases an accurate complexity

4https://bench.cr.yp.to/supercop.html

https://bench.cr.yp.to/supercop.html

4.4. ADVANTAGES AND LIMITATIONS 55

analysis of the attack is not available. This forces us to choose conservative parameters,
and this can also been seen as a disadvantage of the scheme.

Nevertheless, DAGS is competitive and compares well with other other code-based
schemes. These include the classic McEliece approach [BCL+], as well as more recent pro-
posals such as BIKE [ABB+] and BIG QUAKE [BBB+]. The “Classic McEliece" project is an
evolution of the well-known McBits [BCS13](based on the work of Persichetti [Per13]),
and benefits from a well-understood security assessment [McE78, Nie86, Pra62] but suf-
fers from the usual public key size issue. BIG QUAKE continues the line of work of
[BCGO09], and proposes to use quasi-cyclic Goppa codes. Due to the particular nature
of the algebraic attacks, it seems harder to provide security with this approach, and the
protocol has to use very large parameters in order to do so. Finally, BIKE, a protocol
based on QC-MDPC codes, is the result of a merge between two independently published
works with similar background, namely CAKE [BGG+17] and Ouroboros [DGZ17]. The
scheme possesses some very nice features like compact keys and an easy implementation
approach, but has currently some potential drawbacks. In fact, the QC-MDPC encryption
scheme on which it is based is susceptible to a reaction attack by Guo, Johansson and
Stankovski (GJS) [GJS16], and thus the protocol is forced to employ ephemeral keys.
Moreover, due to its non-trivial Decoding Failure Rate (DFR), achieving IND-CCA secu-
rity is currently infeasible, so that the BIKE protocol only claims to be IND-CPA secure.

Indeed, another advantage of our proposal is that it does not involve any decoding
error. This is particularly favorable in a comparison with some lattice-based schemes
like [BCNS15], [ADPS16] and [BCD+16], as well as BIKE. No decoding error allows for
a simpler formulation and better security bounds in the IND-CCA security proof.

Our public key size is considerably smaller than in Classic McEliece and BIG QUAKE,
and similar to that of BIKE. With regard to the latter, we point out that while, for the
same security level, DAGS public keys are indeed bigger, our ciphertexts are a lot smaller.
This is because DAGS uses much shorter codes than BIKE, and the size of ciphertexts is a
direct consequence of this fact. Thus, in the end, the total communication bandwidth is
of the same order of magnitude and smaller if keys are reused.
All the objects involved in the scheme are vectors of finite field elements, which in turn
are represented as binary strings; thus computations are very fast. The cost of computing
the hash functions is minimized thanks to the parameter choice that makes sure the input
frm−em is only 256 bits. As a result, we expect that it will be possible to implement our
scheme efficiently on multiple platforms.

Finally, we would like to highlight that a DAGS-based Key Exchange features an “asym-
metric" structure, where the bandwidth cost and computational effort of the two parties
are considerably different. In particular, in the flow described in Figure 4.1, João bene-
fits from a much smaller message and faster computation (the encapsulation operation),
whereas Maria has to perform a key generation and a decapsulation (which includes a
run of the decoding algorithm), and transmit a larger message (the public matrix). This is
suitable for traditional client-server applications where the server side is usually expected
to respond to a large number of requests and thus benefits from a lighter computational
load. On the other hand, it is easy to imagine an instantiation, with reversed roles, which
could be suitable for example in Internet-of-Things (IoT) applications, where it would be
beneficial to reduce the burden on the client side, due to its typical processing, memory
and energy constraints.

All in all, DAGS offers great flexibility in key exchange applications, which is not the

56 CHAPTER 4. DAGS: KEY ENCAPSULATION FROM DYADIC GENERALIZED
SRIVASTAVA CODES

case for traditional key exchange protocols like Diffie-Hellman.

4.5 — SimpleDAGS

The DAGS algorithms, as detailed in the original proposal [BBB+18], follow the “Ran-
domized McEliece" paradigm presented in [NIKM08], which is built upon the McEliece
cryptosystem. The fact that this version of McEliece is proved to be IND-CPA secure makes
it so that the resulting KEM conversion achieves IND-CCA security tightly, as detailed
in [HHK17]. However, to apply the conversion correctly, it is necessary to use multiple
random oracles. These are needed to produce the additional randomness required by the
paradigm, as well as to convert McEliece into a deterministic scheme (by generating a
low-weight error vector from a random seed) and to obtain an additional hash output for
the purpose of plaintext confirmation. Even though, in practice, such random oracles are
realized using the same hash function (the SHAKE256 function [Div15] from the Keccak
family), the protocol’s description ends up being quite cumbersome and hard to follow.

A simpler protocol can be obtained, although, as we will see, not without conse-
quences, using the Niederreiter cryptosystem. We report the new description below. In
the description, we follow the same conventions used in the original DAGS specification,
using variables n,k, r to denote, respectively, code length, dimension and co-dimension.
All vectors are written in boldface, and, for ease of notation, treated as column vectors.

4.5.1 – Algorithm 1. Key Generation

Key generation follows closely the process described in the original DAGS Key Gener-
ation. We present here a compact version, and we refer the reader to the description in
Section 4.1.1 for further details.

a) Generate dyadic signature h.

b) Build the Cauchy support (u, v).

c) Form Cauchy matrix Ĥ1 = C(u, v).

d) Build Ĥi, i = 2, . . . t, by raising each element of Ĥ1 to the power of i.

e) Superimpose blocks Ĥi, for i = 2, . . . t to form matrix Ĥ as

Ĥ =


Ĥ1

Ĥ2
...
Ĥt

 .

f) Generate vector z by picking dn
s
e random elements zis ∈ Fqm , i = 0, . . . , dn

s
e− 1

and put zis+j = zis for i = 0, . . . , dn
s
e− 1, j = 0, . . . , s− 1.

g) Form H = Ĥ · Diag(z).

h) Project H onto Fq using the co-trace function: call this Hbase.

i) Write Hbase as (B | A), where A is r× r.
j) Get systematic form (M | Ir) = A

−1Hbase: call this H̃.

k) Sample a uniform random string r ∈ Fnq .

l) The public key is the matrix H̃.

4.5. SIMPLEDAGS 57

m) The private key consists of (u,A, r) and H̃.
The main differences are as follows. First of all, the public key consists of the system-

atic parity-check matrix H̃ = (M | Ir), rather than the generator matrix G = (Ik |MT).
Also, the private key only stores u instead of v and y, but it includes additional elements,
namely the random string r, the submatrix A and H̃ itself5.

4.5.2 – Algorithm 2. Encapsulation

Encapsulation uses a hash function H : {0, 1}∗ → {0, 1}` to extract the desired sym-
metric key, ` being the desired bit length (commonly 256). Note that inputs to H are
automatically cast to bitstrings. The function is also used to provide plaintext confirma-
tion by appending an additional hash value, as detailed below.

a) Sample e $← Fnq of weight w.

b) Set c = (c0, c1) where c0 = H̃e and c1 = H(2,e).

c) Compute k = H(1,e, c).

d) Output ciphertext c; the encapsulated key is k.

4.5.3 – Algorithm 3. Decapsulation

As in every code-based scheme, the decapsulation algorithm consists mainly of decod-
ing; in this case, like in the original DAGS version, we call upon the alternant decoding
algorithm (see for example [MS77]).

a) Get syndrome c ′0 corresponding to matrix6 H ′ from private key7.

b) Decode c0 and obtain e ′.

c) If decoding fails or wt(e ′) 6= w, set b = 0 and η = r.

d) Check that H̃e ′ = c0 and H(2,e ′) = c1. If so, set b = 1 and η = e ′.

e) Otherwise, set b = 0 and η = r.

f) The decapsulated key is k = H(b,η, c).
The description we just presented follows the guidelines detailed by the “SimpleKEM"

construction of [BP18], hence our choice to call this new version “SimpleDAGS". This is
one of two aspects in which this variant diverges substantially from the original; we will
discuss advantages (and disadvantages) of this new paradigm in the next section. The
other different aspect is that using Niederreiter requires a different strategy for decoding,
which we describe below.

4.5.4 – Decoding from a Syndrome. In the original version of DAGS, the input to
the decoding algorithm is, as is commonly the case is coding theory, a noisy codeword.
The alternant decoding algorithm consists of three distinct steps. First, it is necessary to
compute the syndrome of the received word, with respect to the alternant parity-check
matrix; this is represented as a polynomial S(z). Then, the algorithm uses the syndrome
to compute the error locator polynomial σ(z) and the error evaluator polynomialω(z), by
solving the key equation ω(z)/σ(z) = S(z) mod zr. Finally, finding the roots of the two
polynomials reveals, respectivelly, the locations and values (if the code is not binary) of

5This is mostly a formal difference, since H̃ is in fact the public key.
6In alternant form.
7See below for details.

58 CHAPTER 4. DAGS: KEY ENCAPSULATION FROM DYADIC GENERALIZED
SRIVASTAVA CODES

the errors. Actually, as shown in Section 4.1.1, it is possible to speed up decapsulation by
incorporating the first step of the decoding algorithm in the reconstruction of the alternant
matrix, i.e. the syndrome is computed on the fly, while the alternant matrix is built.

We now explain how to perform alternant decoding when the input is a syndrome,
rather than a noisy codeword, as in Algorithm 3 above. In this case, we do not need to re-
construct the alternant matrix itself, but rather to transform the received syndrome to the
syndrome corresponding to the alternant matrix. This consists of two steps. First, remem-
ber that the public key H̃ is the systematic form of the matrixHbase. This is obtained from
the quasi-dyadic parity-check matrix H, whose entries are in Fqm , by projecting it onto
the base field Fq. The projection is performed using the co-trace function and a basis for
the extension field, say {β1, . . . ,βm}. Recall from Section 2.2, that the co-trace function
works similarly to the trace function, by writing each element of Fqm as a vector whose
components are the coefficients with respect to the basis {β1, . . . ,βm}. However, instead
of writing the components on m successive rows, the co-trace function distributes them
over the rows at regular intervals, r at a time. More precisely, if a = (a1,a2, . . . ,ar)T

is a column of H, the corresponding column a ′ = (a ′1,a ′2, . . . ,a ′rm)T of Hbase will be
formed by writing the components of each ai in positions a ′i,a

′
r+i, . . . ,a ′r(m−1)+i, for all

i = 1, . . . ,m.
The first step consists of transforming the received syndrome c0 = H̃e into He. For

this, we need to multiply the syndrome by A to obtain AH̃e = AA−1Hbasee = Hbasee.
Then we reverse the projection process and “bring back" the syndrome on the extension
field. This is immediate when operating directly on the matrices, but a little less intuitive
when starting from a syndrome. It turns out that it is still possible to do that, by using
again the basis {β1, . . . ,βm} and summing up the results. Namely, it is enough to collect
all the components si, sr+i, . . . , sr(m−1)+i of the syndrome s = Hbasee and multiply the
resulting vector with the vector (β1, . . . ,βm). This maps the vector of components back
to its corresponding element in Fqm and it is immediate to check that this process yields
He.

The second step consists of relating the newly-obtained syndrome to the alternant
parity-check matrix H ′. Since this is just another parity-check for the same code, it is
possible to obtain one from the other via an invertible matrix. In particular, for GS codes
we haveH = CH ′, where the r×rmatrix C can be obtained using u. Namely, the r rows
of C correspond to the coefficients of the polynomials g1(x), . . . ,gr(x), where we have

g(l−1)t+i =

s∏
j=1

(x− uj)
t

(x− ul)i

for l = 1, . . . , s and i = 1, . . . , t. To complete the second step, it is enough to compute C
and then C−1He. The resulting syndrome is ready to be decoded.

4.5.5 – Consequences. There are some notable consequences to keep in mind when
switching to the SimpleDAGS variant. First of all, the change in the KEM conversion not
only makes the protocol simpler, but has additional advantages. The reduction is tight in
the ROM, and the introduction of the plaintext confirmation step provides an extra layer
of defense, at the cost of just one additional hash value. This is similar to what is done

4.6. IMPROVED RESISTANCE 59

in the Classic McEliece submission [BCL+]. Moreover, the use of implicit rejection and a
“quiet" KEM (i.e. such that the output is always a session key) further simplifies the API,
and is an incentive to design constant-time algorithms, without needing extra machinery
or stronger assumptions, as explained in Sections 14 and 15 of [BP18].

On the other hand, using Niederreiter has a negative impact on the overall perfor-
mance of the scheme. The cost of the first step of decoding, detailed above, is compa-
rable to that of reconstructing H ′ (and computing the syndrome) in the original DAGS,
but there is an additional cost in the multiplication by A. Moreover, inverting the matrix
C in the second step is expensive, and would slow down decapsulation considerably. Al-
ternatively, one could delegate some computation time to the key generation algorithm,
and store C−1 as private key; this would preserve the efficiency of the decapsulation but
noticeably increase the size of the private key. Either way, there is a clear a tradeoff at
hand, sacrificing performance and efficiency in favor of a simpler description and tighter
security. It therefore falls to the user’s discretion whether original DAGS or SimpleDAGS
is the best variant to be employed for the purpose.

4.6 — Improved Resistance

It is natural to think that introducing additional algebraic structure like QD in a
scheme based on algebraic codes (such as Goppa or GS) can give an adversary more power
to perform a structural attack. This is the case of the well-known FOPT attack [FOPT10],
and successive variants [FOP+16], which exploit this algebraic structure to solve a multi-
variate system of equations and reconstruct an alternant matrix which is equivalent to the
private key. A detailed analysis of such attacks, and countermeasures, is given in the orig-
inal DAGS paper [BBB+18]. In 2018, Barelli and Couvreur presented a structural attack
aimed precisely at DAGS [BC18], which is very successful against the original parameters
as presented in Section 4.2.4. Moreover, early in 2019 another attack against DAGS_1
was presented in [BBCO19] and thanks to this analysis, it is now possible to see that these
parameters are particularly vulnerable to the second attack approach. Table 4.9 shows
the cost for the attack presented in [BBCO19]. In what follows, we will briefly explain
the reason for this, and present a new choice of parameters for DAGS_1.

Table 4.9: First set of parameters for DAGS.

Security Level q m n k s t w Attack cost in [BBCO19]

1 25 2 832 416 24 13 104 244

3 26 2 1216 512 25 11 176 244

5 26 2 2112 704 26 11 352 233

As mentioned in Section 4.2.4, the success of the attack strongly depends on the di-
mension of the invariant code D, which is given by k0 −c, where k0 = k/s is the number
of row blocks and c = 2q/s was defined above. For the parameters in question, we have
k0 = 26 and c = 8 and therefore this dimension is 18. This leads to an imbalance in
the ratio of the number of equations to the number of variables. The former are given by
(k0 − c)(n0 − k0 − 1), where n0 = n/s is the number of column blocks, while the latter
consists of the (k0 − c)c variables of the U type and the n0 − k0 + c+ log s− 3 variables
of the V type that define the bilinear system. Therefore we obtain 450 equations in 179
total variables, and this ratio is about 2.5. The authors then show how the system can

60 CHAPTER 4. DAGS: KEY ENCAPSULATION FROM DYADIC GENERALIZED
SRIVASTAVA CODES

be solved by specializing the U variables to obtain linear equations, for a total cost of
approximately 2111 operations, which is below the claimed security level. Actually, this
cost can be further reduced following a hybrid approach that combines exhaustive search
and Gröbner bases, to a total of 283. The crucial point is that a ratio of 2.5 is quite high,
and this is what makes the attack feasible. In contrast, the updated DAGS_5 parameters
produce a ratio of 1.1 which is too low for the attack to work (the system has too many
variables) while the situation for DAGS_3 is even more extreme, since in this case c = k0

and therefore D does not even exist. In this case, the authors suggest to use the dual code
instead, therefore replacing k0 with n0 − k0 in all the above formulas. In principle, this
makes the attack applicable, but the parameters yield a ratio of 0.7 which is again too low
to be of any use. We insist on this crucial point to select our next choice of parameters
for DAGS_1 (where “N.A." stands for “not applicable").

Table 4.10: New DAGS Parameters.

Security Level q m n k s t w Attack cost in [BC18] Attack cost in [BBCO19]

1 28 2 704 352 24 11 88 ≈ 2542 N.A.
3 28 2 1216 512 25 11 176 ≈ 2288 N.A.
5 28 2 1600 896 25 11 176 ≈ 2289 N.A.

Table 4.11: New storage requirements in bytes for the revised version of DAGS with the parameters from
Table 4.10.

Parameter Set Public Key Private Key Ciphertext

DAGS_1 7744 2816 736
DAGS_3 11264 4864 1248
DAGS_5 19712 6400 1632

Note that we have only changed the parameters for DAGS_1, but we have chosen
to report the other two sets too, in order to provide a complete view. With this new
choice, we have k0 = 22 and c = 32 and therefore D does not exist; in fact, not even
its dual exists, since in this case k0 = n0 − k0. This completely defeats the second attack
approach, while the first approach would produce a ridiculously large complexity (≈ 2542,
see above), and we therefore feel comfortable claiming that DAGS_1 is now safe against
all known attacks.

In the end, we can add the Barelli-Couvreur attack(s) to the set of constraints on the
selection of parameters, and we are very thankful to the authors of [BC18] and [BBCO19]
for the detailed and careful analysis of the attack techniques.

4.6.0.1 – Binary DAGS. Parameters in schemes based on QD-GS codes are a carefully
balanced machine, needing to satisfy many constraints. First of all, we would like the
code dimension k = n − mst to be approximately n/2, since rate close to 1/2 is an
optimal choice in many aspects (for instance, against ISD). Secondly, the dyadic order s,
which has to be a power of 2, should be as big as possible, to obtain the most reduction
in key size (but not too big, to avoid the Barelli-Couvreur attack). On the other hand,
the extension degree m and the number of blocks t need to be large enough to have
mt > 21, in order to avoid FOPT. Of course, m, s and t cannot all be large at the same
time otherwise the dimension k would become trivial. Moreover, it is possible to observe

4.6. IMPROVED RESISTANCE 61

that the best outcome is obtained when m and t are of opposite magnitude (one big and
one small) rather than both of “medium" size. Now, since s and t also determine the
number of correctable errors, t cannot be too small either, while a small m is helpful to
avoid having to work on very large extension fields. Note that qm still needs to be at
least as big as the code length n (since the support elements are required to be distinct).
After all these considerations, the result is that, in previous literature [Per12a, CHP12],
the choice of parameters was oriented towards large base field q and small m = 2, with
s ranging from 24 to 26, and t chosen accordingly. We now investigate the consequences
of choosing parameters in the opposite way.

Choosing large m and small t allows q to be reduced to the minimum, and more
precisely q could be even 2 itself, meaning binary codes are obtained. Binary codes were
already considered in the original QD Goppa proposal by Misoczki and Barreto [MB09],
where they ended up being the only safe choice. The reason for this is that larger base
fields mean m can be chosen smaller (and in fact, must, in order to avoid working on
prohibitively large extension fields). This in turn means FOPT is very effective (remember
that there is no parameter t for Goppa codes), so in order to guarantee security one had
to choose m as big as possible (at least 16) and consequently q = 2. Now in our case, if
t is small, s must be bigger (for error-correction purposes), and this pushes n and k up
accordingly. We present below our binary parameters (Table 4.12). Table 4.13 refers to
the memory requirements in bytes, the names refer to DAGS-Binary and the length and
dimension of the code.

Table 4.12: DAGS-Bin Parameters.

Security Level q m n k s t w Attack cost in [BC18] Attack cost in [BBCO19]

1 2 13 6400 3072 27 2 128 N.A. N.A.
3 2 14 11520 4352 28 2 256 N.A. N.A.
5 2 14 14080 6912 28 2 256 N.A. N.A.

Table 4.13: Memory Requirements for Binary DAGS (bytes).

Parameter Set Public Key Private Key Ciphertext

DAGS-Bin64003072 9984 20800 832
DAGS-Bin115204352 15232 40320 1472
DAGS-Bin140806912 24192 49280 1792

The parameters are chosen to stay well clear of the algebraic attacks such as FOPT. In
particular, using binary parameters should entirely prevent the latest attack by Barelli and
Couvreur. In this case we havem� 2, and it is not yet clear whether the attack is appli-
cable in the first place. However, even if this was the case, the complexity of the attack,
which currently depends on the quantity q/s, should depend instead on mqm−1/s. It is
obvious that, with our choice of parameters, the attack would be completely infeasible in
practice.
Note that, in order to be able to select binary parameters, it is necessary to choose longer
codes (as explained above), which end up in slightly larger public keys: these are about
1.3 times larger than those of the original (non-binary) DAGS. On the other hand, the bi-
nary base field should bring clear advantages in terms of arithmetic, and result in a much

62 CHAPTER 4. DAGS: KEY ENCAPSULATION FROM DYADIC GENERALIZED
SRIVASTAVA CODES

more efficient implementation. All things considered, this variant should be seen as yet
another tradeoff, in this case sacrificing public key size in favor of increased security and
efficient implementation.

4.7 — Revised Implementation Results

In this section we present the results obtained in our revised implementation, i.e.,
using the parameters in Table 4.10. Our efforts focused on several aspects of the code,
with the ultimate goal of providing faster algorithms, but which are also clearer and more
accessible. Moreover, we incorporate a dedicated version of the Karatsuba multiplication
algorithm as detailed in Chapter 3, applied to the quasi-dyadic case, which further boosts
the efficiency of encapsulation (where all objects are quasi-dyadic). Finally, we “cleaned
up" and polished our C code, to ensure it is easier to understand for external auditors.
Below, we report timings obtained for our revised implementation (Table 4.15), as well
as the measurements previously obtained for the reference code (Table 4.14), for ease of
comparison. We remark that all these numbers refer to the updated DAGS parameters (i.e.
those presented in Table 4.10). The timings were acquired running the code 100 times
and taking the average. We used CLANG compiler version 8.0.0 and the compilation flags
-O3 -g3 -Wall -march=native -mtune=native -fomit-frame-pointer -ffast-math. Moreover,
we used the processor Intel(R) Core(TM) i5-5300U CPU @ 2.30GHz. The code in C
is available at https://git.dags-project.org/dags/dags and a toy example in
SAGE is available at https://git.dags-project.org/gustavo/DAGS_ref_sage.

Table 4.14: Timings for the reference code submitted to NIST.

Algorithm
Cycles

DAGS_1 DAGS_3 DAGS_5

Key Generation 2,540,311,986 4,320,206,006 7,371,897,084

Encapsulation 12,108,373 26,048,972 96,929,832

Decapsulation 215,710,551 463,849,016 1,150,831,538

Table 4.15: Timings for revised implementation.

Algorithm
Cycles

DAGS_1 DAGS_3 DAGS_5

Key Generation 408,342,881 1,368,126,687 2,061,117,168

Encapsulation 5,061,697 14,405,500 35,655,468

Decapsulation 192,083,862 392,435,142 388,316,593

https://git.dags-project.org/dags/dags
https://git.dags-project.org/gustavo/DAGS_ref_sage

Chapter 5

Root Finding over F2m

As was mentioned in Chapter 2, finding roots of the Error Locator Polynomial (ELP) is an
important step in the decryption of McEliece-like cryptosystems. One of the requirements
for those proposals is that they are resistant to all known cryptanalysis methods. However,
even if a scheme is immune to such attacks, it may be subject to attacks related to its
implementation. In particular, implementations need to avoid side-channel attacks.1

There are different ways to apply side-channel attacks to a cryptosystem. As an ex-
ample, an attacker can measure the execution time of the operations performed by an
algorithm and, based on these measures, estimate some secret information of the scheme.
This approach is thriving even in a data communication network environment. Bernstein,
for instance, demonstrated how to recover AES keys by doing remote timing attacks on
the cache “access speed” [Ber05].

In code-based cryptography, timing attacks on the decryption process are mostly done
during the computation and factorization of the ELP as shown by [SSMS09]. The attack
is usually done during the polynomial evaluation process, while computing the roots of
the ELP. This attack was demonstrated first in [SSMS09] and later in an improved version
in [BCDR17].

[Str12] demonstrates algorithms to efficiently find roots in code-based cryptosys-
tems. However, the author shows only timings in different types of implementations and
selects the one that has the least timing variability. In other words, the author does not
present an algorithm to find the roots in constant time and eliminate a remote timing
attack as remarked in Section 6 of [Str13]. In our work, we use strategies to make the
execution time of those algorithms constant. The first and most important one is to write
the algorithms iteratively, eliminating all variable-length recursions. We also use permu-
tations and simulated operations to uncouple possible measurements of the side effects
of the data being measured. The implementation for finding roots in [Cho17] uses the
Fast Fourier Transform (FFT), which is efficient, but is built and optimized for F213 . In
this chapter, we aim at developing a more generic implementation that does not require
specific optimization in the finite-field arithmetic.

In summary, we show how to perform a remote timing attack on a code-based key
encapsulation mechanism called BIGQUAKE which was submitted to NIST [BBB+]. The

1This chapter is based on a paper accepted to Latincrypt 2019 in a joint work with Douglas Martins and
Ricardo Custódio [MBC19]. Part of this work was done while Gustavo was at CryptoExperts for an internship.

64 CHAPTER 5. ROOT FINDING OVER F2m

attack uses information on timing of finding roots of a polynomial over F2m . The original
implementation submitted to NIST uses a variation of the Berlekamp Trace Algorithm
(BTA) to find roots in the ELP. We provide other methods to find roots showing math-
ematically that is possible to avoid timing attacks. At the end, we make a comparison
between the methods, showing the number of CPU cycles required for each of our imple-
mentations.

5.1 — BIGQUAKE Key Encapsulation Mechanism & Attack

BIGQUAKE (BInary Goppa QUAsi-cyclic Key Encapsulation) [BBB+] uses binary Quasi-
cyclic (QC) Goppa codes in order to accomplish a KEM between two distinct parties. In-
stead of using binary Goppa codes as showed in Section 2.2, BIGQUAKE uses QC Goppa
codes, which have the same properties as Goppa codes but allow smaller keys. Fur-
thermore, BIGQUAKE aims to be IND-CCA [BP18], which makes the attack scenario in
Section 5.1.1 meaningful.

Let us suppose that Alice and Bob (A and B respectively) want to share a session
secret key K using BIGQUAKE. Then Bob has published his public key and Alice needs to
follow the encapsulation mechanism. The function F takes an arbitrary binary string as
input and returns a word of weight t, i.e F : {0, 1}∗ → {x ∈ Fn2 |wh(x) = t}. The detailed
construction of the function F can be found in subsection 3.4.4 in [BBB+]. H : {0, 1}k →
{0, 1}s is a hash function. The function H in the original implementation is SHA-3. The
encapsulation mechanism can be described as:

a) A generates a random m ∈ Fs2;
b) Generate e← F(m);
c) A sends c← (m⊕H(e),H · eT ,H(m)) to B;
d) The session key is defined as: K← H(m, c).
After Bob receives c from Alice, he initiates the decapsulation process:

a) B receives c = (c1, c2, c3);
b) Using the secret key, Bob decodes c2 to e ′ with wh(e ′) 6 t such that c2 = H · e ′T ;
c) B computes m ′ ← c1 ⊕H(e ′);
d) B computes e ′′ ← F(m ′);
e) If e ′′ 6= e ′ or H(m ′) 6= c3 then B aborts.
f) Else, B computes the session key: K← H(m ′, c).
After Bob executes the decapsulation process successfully, both parties of the protocol

agree on the same session secret key K.

5.1.1 – Attack Description. In [SSMS09], the attack exploits the fact that flipping a
bit of the error e changes the Hamming weight w and per consequence the timing for its
decryption. If we flip a position that contains an error (ei = 1) then the error will be
removed and the time of computation will be shorter. However, if we flip a bit in a wrong
position (ei = 0) then it will add another error, which will increase the decryption time
or make decryption fail. The attack described in [BCDR17] exploits the root finding in the
polynomial ELP. It takes advantage of sending ciphertexts with fewer errors than expected,
which generate an ELP with degree less than t, resulting in less time for finding roots. We
explore both ideas applied to the implementation of BIGQUAKE that the decryption will
fail ultimately as e ′ 6= e due to the bitflip. However, the timing variation is observable
earlier.

5.1. BIGQUAKE KEY ENCAPSULATION MECHANISM & ATTACK 65

Algorithm 15 is the direct implementation of the attack proposed in [SSMS09]. We
reused the attack presented to show that the attack still works in current implementa-
tions such as BIGQUAKE when the root finding procedure is vulnerable to remote timing
attacks.

Algorithm 15: Attack on ELP.
Data: n-bit ciphertext c, t as the number of errors and precision parameter M
Result: Attempt to obtain an error vector e hidden in c.

1 e← [0, . . . , 0];
2 for i← 0 to n− 1 do
3 T ← 0;
4 c ′ ← c⊕ setBit(n, i);
5 timem ← 0;
6 for j← 0 to M do
7 times ← time();
8 decrypt(c ′);
9 timee ← time();

10 timem ← timem + (timee − times);
11 end
12 T ← timem/M;
13 L← (T , i);
14 end
15 Sort L in descending order of T ;
16 for k← 0 to t− 1 do
17 index← L[k].i;
18 e[index]← 1;
19 end
20 return e;

After finding the positions of the errors, one needs to verify if the error e ′ found is
the correct one, and then recover the message m. In order to verify for correctness,
one can check e ′ by computing c1 ⊕H(e ′)⊕m = m ′ and if c3 is equal to H(m ′) and if
e ′ = F(m ′) as in decryption. As mentioned in Subsection 5.1, the ciphertext is composed
of c = (m⊕H(e),H · eT ,H(m)) or c = (c1, c2, c3).

5.1.1.1 – Notes about BIGQUAKE implementation and attack. In our tests, that is, when
we ran Algorithm 15 we noticed that BIGQUAKE fails after inserting one additional error.
In the file “kem.c” there is the encryption and decryption process. We extract the part that
causes the failure from that file. Listing 5.1 shows initialiazion of the variable “error” with
a random value of the memory since it is used the function “malloc” and if the message is
not the correct one the function “m2error” does not override the values in “error” and it
breaks the function “decrypt_nied”. One could exploit this idea using the attack proposed
in [VDvT02]. However, we did not consider this scenario since BIGQUAKE performs a
CCA transform.

We recall that the function “malloc” is a memory allocation function and according to
the C reference code the function returns a pointer to the lowest (first) byte in the allo-

66 CHAPTER 5. ROOT FINDING OVER F2m

cated memory block that is suitably aligned for any object type with fundamental align-
ment, for more details see https://en.cppreference.com/w/c/memory/malloc.

1 //Const ruc t an e r ro r e from m
2 i n t * e r ro r = (i n t *) malloc (NB_ERRORS* s i z e o f (i n t)) ;
3 m2error (m, e r ro r) ;
4

5 //Encrypt e (N i e d e r r e i t e r)
6 unsigned char *syndrome = malloc (SYNDROME_BYTES* s i z e o f (unsigned

char)) ;
7 decrypt_nied (syndrome , error , (unsigned char *) sk) ;

Listing 5.1: Code snippet of BIGQUAKE decryption process.

The problem has an easy solution as we show in Listing 5.2. The solution is to initialize
the variable with zeros. In this way, if the function ‘m2error”does not override the values
in “error” then “‘error” will contains zeros and it does not cause failure in the function
“decrypt_nied”.

1 //Const ruc t an e r ro r e from m
2 i n t e r ro r [NB_ERRORS] = { 0 } ;
3 m2error (m, e r ro r) ;
4

5 //Encrypt e (N i e d e r r e i t e r)
6 unsigned char *syndrome = malloc (SYNDROME_BYTES* s i z e o f (unsigned

char)) ;
7 decrypt_nied (syndrome , error , (unsigned char *) sk) ;

Listing 5.2: Code snippet of BIGQUAKE decryption process with the fix.

In our attack, we selected the precision parameter M as 500 since it was the one
that showed the more precise results without taking a long time of computation. In our
tests, it took ≈ 17 minutes for recovering one correct message m. We used an Intel®

Core(TM) i5-5300U CPU @ 2.30GHz and running everything locally. The implementation
of the attack is written in C and it is avaiable at: https://git.dags-project.org/
gustavo/roots_finding/src/master/attack_bigquake.

5.1.2 – Constant-time F2m operations. In our analysis, we noticed that the original
implementation of BIGQUAKE uses log and antilog tables for computing multiplications
and inversions. These look-up tables give a speed up in those operations. However, this
approach is subject to cache attacks in a variation of [BHLY16] where the attacker tries
to produce cache misses and recover some secret data from the operations.

We want to avoid the use of look-up tables; we made a constant time implementation
for multiplication and inversion. We used a similar approach as [Cho17] for finite field
operations. Listing 5.3 shows the multiplication in constant time between two elements
over F212 followed by the reduction of the result by the irreducible polynomial f(x) =
x12+x6+x4+x+1. The inversion in finite fields can be computed by raising an element a
to the power 2m−2 as it is shown in Listing 5.4. The squarings are implemented following
the implementation provided in [Cho17].

1 #inc lude <s t d i n t . h>

https://en.cppreference.com/w/c/memory/malloc
https://git.dags-project.org/gustavo/roots_finding/src/master/attack_bigquake
https://git.dags-project.org/gustavo/roots_finding/src/master/attack_bigquake

5.1. BIGQUAKE KEY ENCAPSULATION MECHANISM & ATTACK 67

2 typedef u in t16_t gf ;
3 gf gf_q_m_mult (g f in0 , g f in1) {
4 uint64_t i , tmp , t0 = in0 , t1 = in1 ;
5 //M u l t i p l i c a t i o n
6 tmp = t0 * (t1 & 1) ;
7 f o r (i = 1; i < 13; i++)
8 tmp =̂ (t0 * (t1 & (1 << i))) ;
9 // reduct ion

10 tmp = tmp & 0x7FFFFF ;
11 // f i r s t s tep of reduct ion
12 gf reduct ion = (tmp >> 12) ;
13 tmp = tmp & 0xFFF ;
14 tmp = tmp ^ (reduct ion << 6) ;
15 tmp = tmp ^ (reduct ion << 4) ;
16 tmp = tmp ^ reduct ion << 1;
17 tmp = tmp ^ reduct ion ;
18 // second s tep of reduct ion
19 reduct ion = (tmp >> 12) ;
20 tmp = tmp ^ (reduct ion << 6) ;
21 tmp = tmp ^ (reduct ion << 4) ;
22 tmp = tmp ^ reduct ion << 1;
23 tmp = tmp ^ reduct ion ;
24 tmp = tmp & 0xFFF ;
25 re turn tmp ;
26 }

Listing 5.3: Multiplication of two elements in F212

1 #inc lude <s t d i n t . h>
2 typedef u in t16_t gf ;
3 gf g f_ inv (gf in) {
4 gf tmp_11 = 0;
5 gf tmp_1111 = 0;
6 gf out = in ;
7 out = gf_sq (out) ; //a 2̂
8 tmp_11 = gf_mult (out , in) ; //a 2̂*a = a 3̂
9 out = gf_sq (tmp_11) ; // (a^3)̂ 2 = a 6̂

10 out = gf_sq (out) ; // (a^6)̂ 2 = a^12
11 tmp_1111 = gf_mult (out , tmp_11) ; //a^12*a 3̂ = a^15
12 out = gf_sq (tmp_1111) ; // (a^15)̂ 2 = a^30
13 out = gf_sq (out) ; // (a^30)̂ 2 = a^60
14 out = gf_sq (out) ; // (a^60)̂ 2 = a^120
15 out = gf_sq (out) ; // (a^120)̂ 2 = a^240
16 out = gf_mult (out , tmp_1111) ; //a^240*a^15 = a^255
17 out = gf_sq (out) ; // (a^255)̂ 2 = 510
18 out = gf_sq (out) ; // (a^510)̂ 2 = 1020
19 out = gf_mult (out , tmp_11) ; //a^1020*a 3̂ = 1023
20 out = gf_sq (out) ; // (a^1023)̂ 2 = 2046

68 CHAPTER 5. ROOT FINDING OVER F2m

21 out = gf_mult (out , in) ; //a^2046*a = 2047
22 out = gf_sq (out) ; // (a^2047)̂ 2 = 4094
23 re turn out ;
24 }

Listing 5.4: Inversion of an element in F212

5.2 — Root Finding Methods

As argued, the leading cause of information leakage in the decoding algorithm is the
process of finding the roots of the ELP. In general, the time needed to find these roots
varies, often depending on the roots themselves. Thus, an attacker who has access to
the decoding time can infer these roots, and hence get the vector of errors e. Next,
we propose modifications in four of these algorithms to avoid the attack presented in
Subsection 5.1.1.

Strenzke [Str12] presents an algorithm analysis for fast and secure root finding for
code-based cryptosystems. He uses as a basis for his results the implementation of “Hymes”
[BS08]. We rewrote the operation in Hymes without tables and analyzed each line of code
from the original implementations, taking care of modifying them in order to eliminate
processing that could indicate root-dependent execution time. The adjustments were
made in the following algorithms to find roots: exhaustive search, linearized polynomi-
als, Berlekamp trace algorithm (BTA), and successive resultant algorithm (SRA).

In this work, we use the following notation: given a univariate polynomial p, of degree
d and coefficients over a finite field, one needs to find its roots. In our case, we are
concerned about binary fields, i.e., F2m . Additionally, we assume that all the factors of p
are linear and distinct.

5.2.1 – Exhaustive search. Exhaustive search is a direct method, in which the evalua-
tion of p for all the elements in F2m is performed. A root is found whenever the evaluation
result is zero. This method is acceptable for small fields and can be made efficient with a
parallel implementation. Algorithm 16 describes this method.

As can be seen in Algorithm 16, this method leaks information. This is because when-
ever a root is found, i.e., dummy = 0, an extra operation is performed. In this way, the
attacker can infer from this additional time that a root was found, thus providing ways
to obtain data that should be secret.

One solution to avoid this leakage is to permute the elements of vector A. Using this
technique, an attacker can identify the extra operation, but without learning any secret
information. In our case, we use the Fisher-Yates shuffle [Bla05] for shuffling the elements
of vector A. In [WSN18], the authors show an implementation of the shuffling algorithm
safe against timing attacks. Algorithm 17 shows the permutation of the elements and the
computation of the roots.

Using this approach, we add one extra step to the algorithm. However, this permuta-
tion blurs the sensitive information of the algorithm, making the usage of Algorithm 17
slightly harder for the attacker to acquire timing leakage.

The main costs for Algorithm 16 and Algorithm 17 are the polynomial evaluation
Cpol_eval. Since we need to evaluate each element in A, it is safe to assume that the
total cost is:

Cexh = n · Cpol_eval. (5.1)

5.2. ROOT FINDING METHODS 69

Algorithm 16: Exhaustive search algorithm for finding roots of a univariate poly-
nomial over F2m .

Data: p(x) as univariate polynomial over F2m with d roots, A = [a0, . . . ,an−1]
as the support of the code in F2m , n as the length of the code.

Result: R as a set of roots of p(x).
1 R← ∅;
2 for i← 0 to n− 1 do
3 dummy← p(A[i]);
4 if dummy == 0 then
5 R.add(A[i]);
6 end
7 end
8 return R;

Algorithm 17: Exhaustive search algorithm with a countermeasure for finding
roots of an univariate polynomial over F2m .

Data: p(x) as univariate polynomial over F2m with d roots, A = [a0, . . . ,an−1]
as the support of the code in F2m , n as the length of the code.

Result: R as a set of roots of p(x).
1 permute(A);
2 R← ∅;
3 for i← 0 to n− 1 do
4 dummy← p(A[i]);
5 if dummy == 0 then
6 R.add(A[i]);
7 end
8 end
9 return R;

We can go further and express the cost for one polynomial evaluation by the number
of operations in finite fields. In our implementation2 the cost is determined by the degree
d of the polynomial and basic finite-field operations such as addition and multiplication.
As a result, the cost for one polynomial evaluation is:

Cpol_eval = d(Cgf_add + Cgf_mul). (5.2)

5.2.2 – Linearized polynomials. The second countermeasure proposed is based on
linearized polynomials. The authors in [FT02] propose a method to compute the roots of
a polynomial over F2m , using a particular class of polynomials, called linearized polyno-
mials. In [Str12], this approach is a recursive algorithm which the author calls “dcmp-rf”.
In our solution, however, we present an iterative algorithm. Linearized polynomials can
be defined as follows:

2available in https://git.dags-project.org/gustavo/roots_finding

https://git.dags-project.org/gustavo/roots_finding

70 CHAPTER 5. ROOT FINDING OVER F2m

Definition 5.1. A polynomial `(y) over F2m is called a linearized polynomial if

`(y) =
∑
i

ciy
2i , (5.3)

where ci ∈ F2m .

In addition, from [TJR01], we have Lemma 5.2 that describes the main property of
linearized polynomials for finding roots.

Lemma 5.2. Let y ∈ F2m and let α0,α1, . . . ,αm−1 be a standard basis over F2. If

y =

m−1∑
k=0

ykα
k,yk ∈ F2 (5.4)

and `(y) =
∑
j cjy

2j , then

`(y) =

m−1∑
k=0

yk`(α
k). (5.5)

We call A(y) over F2m an affine polynomial if A(y) = `(y) + β for β ∈ F2m , where
`(y) is a linearized polynomial.

We can illustrate a toy example to understand the idea behind finding roots using
linearized polynomials.

Example 5.2.1. Let us consider the polynomial f(y) = y2 + (α2 + 1)y+ (α2 +α+ 1)y0

over F23 and α represented as elements in F2[x]/(x
3 + x2 + 1). Since we are trying to

find roots, we can write f(y) as

y2 + (α2 + 1)y+ (α2 + α+ 1)y0 = 0

or
y2 + (α2 + 1)y = (α2 + α+ 1)y0 (5.6)

We can point that on the left-hand side of Equation 5.6, `(y) = y2 + (α2 + 1)y is a
linearized polynomial over F23 and Equation 5.6 can be expressed just as

`(y) = α2 + α+ 1 (5.7)

If y = y2α
2 + y1α+ y0 ∈ F23 then, according to Lemma 5.2, Equation 5.7 becomes

y2`(α
2) + y1`(α) + y0`(α

0) = α2 + α+ 1 (5.8)

We can compute `(α0), `(α) and `(α2) using the left hand side of Equation 5.6 and we
have the following values

`(α0) = (α0)2 + (α2 + 1)(α0) = α2 + 1 + 1 = α2

`(α) = (α)2 + (α2 + 1)(α) = α2 + α2 + α+ 1 = α+ 1

`(α2) = (α2)2 + (α2 + 1)(α2) = α4 + α4 + α2 = α2.

(5.9)

5.2. ROOT FINDING METHODS 71

A substitution of Equation 5.9 into Equation 5.8 gives us

(y2 + y0)α
2 + (y1)α+ (y1)α

0 = α2 + α+ 1. (5.10)

Equation 5.10 can be expressed as a matrix in the form

(
y2 y1 y0

)1 0 0
0 1 1
1 0 0

 =
(
1 1 1

)
. (5.11)

If one solves simultaneously the linear system in Equation 5.11 then the results are the
roots of the polynomial given in Equation 5.6. From Equation 5.10, one observes that the
solutions are y = 110 and y = 011, which can be translated to α2 + α and α+ 1.

The authors in [FT02] provide a generic decomposition for finding affine polynomials.
They show that each polynomial in the form F(y) =

∑t
j=0 fjy

j for fj ∈ F2m can be
represented as

F(y) = f3y
3 +

d(t−4)/5e∑
i=0

y5i(f5i +

3∑
j=0

f5i+2jy
2j). (5.12)

After that, we summarize all the steps as Algorithm 18. The function “generate(m)”
refers to the generation of the elements in F2m using Gray codes, see [Sav97] for more
details about Gray codes.

Algorithm 18 presents a countermeasure in the last steps of the algorithm, i.e., we
added a dummy operation for blinding if X[j] is a root of polynomial F(x). Using Algo-
rithm 18, the predominant cost for its implementation is:

Clin = m(Cgf_pow + Cpol_eval) + 2m(Cgf_pow + 2Cgf_mul). (5.13)

The linearized polynomials methods precompute the polynomials to later on perform
a brute force search running in all elements of the field but it decreases the number of
operations performed in the search.

72 CHAPTER 5. ROOT FINDING OVER F2m

Algorithm 18: Linearized polynomials for finding roots over F2m .

Data: p(x) as a univariate polynomial over F2m with degree d and m as the
extension field degree.

Result: R as a set of roots of p(x).
1 for k← 0 to m− 1 do
2 T [k]← [];
3 end
4 Q← [];
5 for j← 0 to 2m − 1 do
6 A[j]← [];
7 end
8 R← [];
9 dummy← [];

10 if f0 == 0 then
11 R.append(0);
12 end
13 for i← 0 to d(d− 4)/5e do
14 `i(x)← 0;
15 for j← 0 to 3 do
16 `i(x)← `i(x) + f5i+2jx

2j ;
17 end
18 Q[i]← `i(x);
19 end
20 for k← 0 to m− 1 do
21 for i← 0 to d(d− 4)/5e do
22 T [k][i]← Q[αk];
23 end
24 end
25 A0

i ← [];
26 for i← 0 to d(d− 4)/5e do
27 A0

i ← f5i;
28 end
29 X← generate(m);
30 for j← 1 to 2m − 1 do
31 for i← 0 to d(d− 4)/5e do
32 temp← A[j− 1][i];
33 temp← temp+ T [δ(X[j],X[j− 1])][i];
34 A[j][i]← temp;
35 end
36 end
37 for j← 1 to 2m − 1 do
38 result← 0;
39 for i← 0 to d(d− 4)/5e do
40 result = result+ (X[j])5iA[j][i];
41 end
42 eval = result+ f3(X[j])

3;
43 if eval == 0 then
44 R.append(X[j]);
45 else
46 dummy.append(X[j]);
47 end
48 end
49 return R;

5.2.3 – Berlekamp Trace Algorithm – BTA. In [Ber70], Berlekamp presents an ef-
ficient algorithm to factor a polynomial, which can be used to find its roots. We call

5.2. ROOT FINDING METHODS 73

this algorithm Berlekamp trace algorithm since it works with a trace function defined as
Tr(x) = x + x2 + x22

+ · · · + x2m−1
. It is possible to change BTA for finding roots of a

polynomial p(x) using β = {β1,β2, . . . ,βm} as a standard basis of F2m , and then com-
puting the greatest common divisor between p(x) and Tr(β1 · x). After that, it starts a
recursion where BTA performs two recursive calls; one with the result of gcd algorithm
and the other with the remainder of the division p(x)/ gcd(p(x), Tr(βi · x)). The base
case is when the degree of the input polynomial is constant. In this case, BTA returns
the root, by getting the constant term of the polynomial. In summary, the BTA is a divide
and conquer like algorithm since it splits the task of computing the roots of a polynomial
p(x) into computing the roots of two smaller polynomials. The description of the BTA
algorithm is presented in Algorithm 19.

Algorithm 19: Berlekamp Trace Algorithm [Str12] – BTA(p(x), i)-rf.

Data: p(x) as a univariate polynomial over F2m and i.
Result: The set of roots of p(x).

1 if deg(p(x)) 6 1 then
2 return root of p(x);
3 end
4 p0(x)← gcd(p(x), Tr(βi · x));
5 p1(x)← p(x)/p0(x) ;
6 return BTA(p0(x), i+ 1) ∪ BTA(p1(x), i+ 1);

As we can see, a direct implementation of Algorithm 19 has non-constant execution
time. The recursive behavior may leak information about the characteristics of roots in a
side-channel attack. Additionally, in our experiments, we noted that the behavior of the
gcd with the trace function may result in a polynomial with the same degree. Therefore,
BTA will divide this input polynomial in a future call with a different basis. Consequently,
there is no guarantee of a constant number of executions.

In order to avoid the nonconstant number of executions, here referred as BTA-it, we
propose an iterative implementation of Algorithm 19. In this way, our proposal iterates in
a fixed number of iterations instead of calling itself until the base case. The main idea is
not changed; we still divide the task of computing the roots of a polynomial p(x) into two
smaller instances. However, we change the approach of the division of the polynomial.
Since we want to compute the same number of operations independent of the degree
of the polynomial, we perform the gcd with a trace function for all elements in β, and
choose a division that results in two new polynomials with almost the same degree.

This new approach allows us to define a fixed number of iterations for our version
of BTA. Since we always divide into two small instances, we need t − 1 iterations to
split a polynomial of degree t into t polynomials of degree 1. Algorithm 20 presents this
approach.

Algorithm 20 extracts a root of the polynomial when the variable current has a poly-
nomial with degree equal to one. If this degree is greater than one, then the algorithm
needs to continue dividing the polynomial until it finds a root. The algorithm does that
by adding the polynomial in a stack and reusing this polynomial in a division.

74 CHAPTER 5. ROOT FINDING OVER F2m

Algorithm 20: Iterative Berlekamp Trace Algorithm – BTA(p(x))-it.

Data: p(x) as an univariate polynomial over F2m , d = deg(p(x)) as number of
expected roots, β as a standard basis of F2m .

Result: The set of roots of p(x).
1 g← {p(x)}; // The set of polynomials to be computed
2 for k← 0 to d do
3 current = g.pop();
4 for j← 1 to m do
5 candidates[j− 1]← gcd(current, Tr(βj · x));
6 end
7 Select p0 ∈ candidates such as p0.degree ' current.degree

2 ;
8 p1(x)← current/p0(x) ;
9 if p0.degree == 1 then

10 R.add(root of p0)
11 end
12 else
13 g.add(p0);
14 end
15 if p1.degree == 1 then
16 R.add(root of p1)
17 end
18 else
19 g.add(p1);
20 end
21 end
22 return R

The overall cost of Algorithm 20 is:

CBTA−it = t(mCgcd + CQuoRem). (5.14)

where Cgcd is the cost to compute the gcd of two polynomials, d be the largest degree
of the two polynomials. In our implementation, the cost of Cgcd is:

Cgcd = d(Cgf_inv + 3Cgf_mul), (5.15)

and CQuoRem is the cost for computing the quotient and remainder between two poly-
nomials. The cost for this computation is:

CQuoRem = d(Cgf_inv + (d+ 1)Cgf_mul + Cgf_add). (5.16)

5.2.4 – Successive Resultant Algorithm. In [Pet14], the author presents an alterna-
tive method for finding roots in Fpm . Later on, the authors explain the method better
in [DPP16]. The Successive Resultant Algorithm (SRA) relies on the fact that it is possi-
ble to find roots exploiting properties of an ordered set of rational mappings.

Given a polynomial p of degree d and a sequence of rational maps K1, . . . ,Kt, the
algorithm computes finite sequences of length j 6 t + 1 obtained by successively trans-
forming the roots of p by applying the rational maps. The algorithm can be explained as

5.3. COMPARISON 75

follows: Let {v1, . . . , vm} be an arbitrary basis of Fpm over Fp, then it is possible to define
m+ 1 functions `0, `1, . . . , `m from Fpm to Fpm such that

`0(z) = z
`1(z) =

∏
i∈Fp `0(z− iv1)

`2(z) =
∏
i∈Fp `1(z− iv2)

· · ·
`m(z) =

∏
i∈Fp `m−1(z− iv1).

The functions `j are examples of linearized polynomials, as previously defined in Sec-
tion 5.2.2.

Petit [Pet14] sets up the following polynomial system:
f(x1) = 0
xpj = ajxj = xj+1 j = 1, . . . ,m− 1
xpm − amxm = 0

(5.17)

where the ai ∈ Fpn . Any solution of this system provides us with a root of p(x) by the
first equation, and the m last equations together imply this root belongs to Fpm . From
this system of equations, [Pet14] derives Theorem 5.3.

Theorem 5.3. Let (x1, x2, . . . , xm) be a solution of the equations in Equation 5.17. Then
x1 ∈ Fpm is a solution of p(x). Conversely, given a solution x1 ∈ Fpm of p(x), we can
reconstruct a solution of all equations in Equation 5.17 by setting x2 = xp1 − a1x1, etc.

In [Pet14], the author presents an algorithm for solving the system in Equation 5.17
using resultants. The solutions of the system are the roots of polynomial p(x). We im-
plemented the method presented in [Pet14] using SAGE Math [Th19] due to the lack of
libraries in C that work with multivariate polynomials over finite fields. It is worth re-
marking that this algorithm is almost constant-time and hence we just need to protect the
branches presented on it. The countermeasure adopted was to add dummy operations,
similar to Section 5.2.2.

5.3 — Comparison

In this section, we presented the results of the execution of each of the methods pre-
sented in Section 5.2. We used an Intel® Core(TM) i5-5300U CPU @ 2.30GHz. The code
was compiled with GCC version 8.3.0 and the following compilation flags “-O3 -g3 -Wall
-march=native -mtune=native -fomit-frame-pointer -ffast-math”. We ran 500 times the
code and got the average number of cycles. Table 5.1 shows the number of cycles of root
finding methods without countermeasures, while Table 5.2 shows the number of cycles
when there is a countermeasure. In both cases, we used d ∈ {55, 65, 100} where d is the
number of roots. We remark that the operations in the tables are over F212 and F216 . We
used two different finite fields for showing the generality of our implementations and the
costs for a small field and a larger field.

Figure 5.1 shows the number of cycles for random polynomials with degree 55, 65 and
100 and all the operations are over F216 and we ran 600 times with random polynomials
with d ∈ {55, 65, 100}. Figure 5.1a shows a time variation in the execution time of the
exhaustive method, as expected, the average time was increased. Figure 5.1b shows a

76 CHAPTER 5. ROOT FINDING OVER F2m

Table 5.1: Number of cycles divided by 108 for each method of finding roots without countermeasures.

Nr. Roots Field Exhaustive Search Linearized polynomials BTA-rf SRA

55
F212 10.152 11.116 9.801 23.016
F216 30.336 31.100 37.169 23.335

65
F212 12.103 15.512 11.933 27.113
F216 37.331 38.709 38.308 27.828

100
F212 18.994 18.316 17.322 35.552
F216 48.561 63.792 57.707 37.359

Table 5.2: Number of cycles divided by 108 for each method of finding roots with countermeasures.

Nr. Roots Field Exhaustive Search Linearized polynomials BTA-it SRA

55
F212 11.311 12.546 10.718 24.104
F216 32.578 43.364 36.471 26.600

65
F212 13.941 17.590 16.774 28.558
F216 39.161 40.394 39.081 29.296

100
F212 19.711 19.921 18.081 42.114
F216 50.120 65.331 68.636 42.124

variation of time when we did not add the countermeasures, but when we add them, we
see a more constant behavior. Figure 5.1c, it is possible to see a nonconstant behavior of
BTA-rf. However, this is different for BTA-it, which shows a constant behavior.

The main focus of our proposal was to find alternatives to compute roots of ELP that
have constant execution time. Figure 5.2 presents an overview between the original im-
plementations and the implementations with countermeasures. It is possible that when
a countermeasure is present on Linearized and on BTA approach, the number of cycles
increases. However, the variance of time decreases. We remark that the “points” out of
range can be ignored since we did not run the code under a separated environment, and
as such it could be that some process in our environment influenced the result.

In our study, we demonstrated countermeasures that can be used to avoid remote
timing attacks. In our empirical analysis, i.e, the results in Table 5.2, BTA-it shows an
increase in the number of cycles but it shows a more constant behaviour and it is one of the
safer choices. However, the exhaustive search with shuffling shows the smallest variation
of time, which can be an alternative for usage. Still, the problem for this method is that
if the field is large, then it becomes costly to shuffle and iterate through all elements.

5.3.1 – Open problems. We bring to the attention of the reader that we did not use
any optimization in our implementations, i.e., we did not use vectorization or bit slicing
techniques or any specific instructions such as Intel® IPP Cryptography for finite field
arithmetic in our code. Therefore, these techniques and instructions can improve the
finite fields operations and reduce the number of cycles of our implementations.

We remark that for achieving a safer implementation, one needs to improve the secu-
rity analysis, by removing conditional memory access and protecting memory access of in-
structions. Moreover, one can analyze the security of the implementations, by considering

5.3. COMPARISON 77

(a) Comparison between exhaustive search without (left) and
with (right) countermeasures.

(b) Comparison between linearized polynomials without (left)
and with (right) countermeasures.

(c) Comparison between BTA-rf (left) and BTA-it (right) execu-
tions.

(d) Comparison between SRA (left) and Safe SRA (right) exe-
cutions.

Figure 5.1: Plots of measurements cycles for methods presented in Section 5.2. Our evaluation of SRA was
made using a Python implementation and cycles measurement with C. In our tests, the drawback of calling a
Python module from C has behavior bordering to constant.

8.38 · 108 8.4 · 108 8.42 · 108 8.44 · 108 8.46 · 108

Ours
Lin.

5.24 · 109 5.28 · 109 5.32 · 109 5.36 · 109

Ours
SRA

9.6 · 108 1.04 · 109 1.12 · 109 1.2 · 109 1.28 · 109 1.36 · 109 1.44 · 109 1.52 · 109 1.6 · 109

Ours
BTA

Figure 5.2: Comparison of original implementation and our proposal for Linearized, Successive resultant algo-
rithm and Berlekamp trace algorithm with d = 100.

different attack scenarios and performing an in-depth analysis of hardware side-channel
attacks.

Chapter 6

A Reaction Attack on LRPC Codes

Currently, there are two major trends to construct code-based schemes with small keys.
The first one makes use of codes defined by very sparse parity-check matrices, such as
LDPC and MDPC codes [BCG06,MTSB13], while the second one is based on rank metric
codes [Gab85]. In this chapter, we focus on the latter, and in particular, we consider the
case of LRPC codes, which are in a sense a point of contact between the two. In fact, LRPC
stands for Low-Rank Parity-Check, and this class of codes is characterized by a “sparse”
(in the rank metric sense) parity-check matrix, and therefore it can effectively be seen as
a rank-metric equivalent of LDPC/MDPC codes. As we will see, and as it is often the case
for rank-metric schemes, LRPC codes share many of the aspects of their Hamming metric
counterpart, including vulnerabilities.1

In what follows, we describe McNie [KKG+18] – a first round candidate [NIS17] to
the NIST PQ crypto standardization process2. We will use McNie to showcase our reaction
attack in Section 6.4.

McNie follows a “hybrid” framework using both McEliece and Niederreiter in the en-
cryption process. The scheme employs quasi-cyclic codes with low-weight parity-check
matrices of the form (H1 H2 H3) and

(
H1 H2 H3 H4
H5 H6 H7 H8

)
where Hi are circulant matrices.

The authors refer to these codes as 3- and 4-Quasi-Cyclic codes. The key generation,
encryption and decryption of McNie are summarized in Figure 6.1.

Remark. According to the protocol specifications [GKK+17], in the general description
of the scheme, the authors suggest the possibility to further use a permutation matrix P
to form F as F = G ′P−1H>S. However, in the actual proposal, this matrix is set to the
identity matrix, so it is never used. Therefore, we do not see a reason to use it and burden
the description.

There exist some variations of LRPC codes that can be used in the same framework for
cryptosystems. For example, it is possible to use double circulant LRPC (DC-LRPC) where
the parity-check matrix H is a double-circulant matrix of rank d, i.e., a concatenation
of two cyclic matrices, as shown in [GRSZ14]. Another variation used is Quasi-Cyclic

1This chapter is based on a paper accepted at Latincrypt 2019 and it is joint work with Edoardo Persichetti,
Simona Samardjiska and Paolo Santini [SSPB19].

2https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization

80 CHAPTER 6. A REACTION ATTACK ON LRPC CODES

1 Key generation: Choose a random 3 or 4 generator QC LRPC code over Fqm
of low rank d, (n − k) × n parity check matrix H over Fqm and generator
matrix G over Fqm . Further, choose a random invertible (n − k) × (n − k)
matrix S over Fqm and a random l× n matrix G ′ over Fqm .
Secret Key: The low rank matrix H, and the masking matrix S.
Public Key: The matrices F = G ′H>S and G ′.

2 Encryption: To encrypt a message m ∈ Fqm , generate a random e ∈ Fnqm of
rank r. Compute c1 = mG ′ + e and c2 = mF. The ciphertext is (c1, c2).

3 Decryption: Compute syndrome s ′ = c1H
> − c2S−1 = eH>. Recover the

error vector e by decoding the LRPC code, then compute mG′ = c1 − e and
obtain m by solving the obtained system.

Figure 6.1: The McNie cryptosystem [GKK+17,KKG+18].

LRPC codes where the parity-check matrix H is a quasi-cyclic matrix of low rank d as
in [KKG+18]. In all those variations as the one presented in Figure 2.1, the secret matrix
H has low rank.

6.1 — A Reaction Attack

We are now ready to describe the details of our attack. The main idea is to exploit
decoding failures caused by the syndrome s not generating the whole space 〈FE〉. Thus,
for ease of exposition, in this section we will assume that this is the case. Later we will
show that the influence of other types of decoding failures to the success of our attack is
negligible, thus justifying the current assumption.

Suppose that an adversary A interacts with a decryption oracle D of an LRPC cryp-
tosystem. He continuously sends encrypted messages to D and waits for the reaction
from the oracle. If D returns failure, A records the error e that he used in the encryption
of the message. A collects a total of t error vectors, where t is chosen appropriately. We
will discuss this choice later in this section.

Let e be an error vector that A collected during his interaction with D. We now show
how to use this information to recover the secret matrix H.

Recall from Section 2.2.7, Equation 2.26, that we can express the syndrome equation
over the base field as s ′ = AHe

′>, where s ′ contains the coefficients of the syndrome in
the basis {FiEj} 16i6d

16j6r
. Alternatively, directly from equation 2.24, the syndrome equation

can be written in a matrix form: s can be written as the product between the vector of
basis elements (F1E1, F1E2, . . . , FdEr) and a matrix ĀH,e ∈ Frd×(n−k)q :

s = (F1E1, F1E2, . . . , FdEr) · ĀH,e. (6.1)

The key observation in our attack is that a decoding failure occurs when the matrix ĀH,e

is not of full rank – in other words, the left kernel of the matrix ĀH,e is non-trivial. This
means that there must exist (at least) one nonzero vector ve ∈ Frdq , ve 6= 01×rd, such
that

ve · ĀH,e = 01×n−k. (6.2)

6.1. A REACTION ATTACK 81

Now consider our attack scenario. The adversary A knows the error e that caused the
matrix ĀH,e to be of non-full rank. He, however, does not know the coefficients h =
{hi,j,l} 16l6d

16i6n−k
16j6n

of the matrix H, and therefore he does not know the kernel vector ve.

Setting Āe(h) = ĀH,e to emphasize the unknown coefficients h, we can rewrite Equa-
tion 6.2 as

ve · Āe(h) = 01×n−k. (6.3)

The main step of our attack now boils down to finding the solutions to Equation 6.3 in
the unknown coefficients h of H and the unknown kernel vector ve.

Observe that we can actually use several errors e1, . . . , et to form equations similar
to Equation 6.3. In these equations for each error ei we introduce a new appropriate
kernel element vei . However, they all share the same unknown coefficients of the matrix
H. Thus, we can form the following system:

ve1 · Āe1(h) = 01×n−k
ve2 · Āe2(h) = 01×n−k
. . .
vet · Āet(h) = 01×n−k

(6.4)

The right value for t depends on several factors: the method of solving, the parameters
of the system, but most notably the nature of the system. In principle, t should be big
enough such that solving the system unambiguously gives the coefficients of H. We will
discuss the choice of t in the next section.

Suppose that t is chosen appropriately. Observe that system 6.4 is a system of bilinear
equations reminiscent of the equations obtained in the MinRank problem [BFS99]. We
can thus try solve this system using similar strategies as in at least three different methods
for solving MinRank – the Kernel method [GC00], Kipnis-Shamir method [KS99] and the
minors method [Cou01]. The main differences are that first, there are several polynomial
matrices whose non-trivial kernel needs to be found and second, all of these matrices are
polynomial matrices in the same variables. At first sight, this situation bears similarities to
Simultaneous MinRank [BFP13, FGP+15] which is commonly encountered in MQ cryp-
tography based on multivariate systems. However, since the different errors e1, e2, . . . , et
produce different matrices Āe1(h), Āe2(h), . . . , Āet(h), it is not clear how to use the com-
mon techniques that significantly speed up the attack on those MQ cryptosystems.

In the next subsection, we will describe in detail a Kernel-method–like approach to
solving system 6.4. A straightforward application of the other algebraic methods results
in a significantly larger complexity. Therefore a deeper insight into the properties of
system 6.4 is necessary in order to apply these efficiently.

6.1.1 – Solving System 6.4 by Kernel Guessing. Suppose that the adversary A has
collected t error vectors e1, e2, . . . , et that cause decryption failures. As before, we as-
sume that the corresponding matrices Āe1(h), Āe2(h), . . . , Āet(h) are singular. This means
that sizes of the kernels of these matrices are at least 1. The adversary now tries to guess
the vectors vei , such that vei belongs to the kernel of Āei(h) for each i ∈ [1; t]. If all
vectors vei are correctly guessed, what remains is to solve the obtained linear system in
the unknown coefficients h. In general, in order to obtain a unique solution we need to
collect at least the same number of equations as variables. For each vei we can form n−k

82 CHAPTER 6. A REACTION ATTACK ON LRPC CODES

equations, so we need t(n−k) to be at least the number of variables. For a random LRPC
code of rank d, the number of unknown coefficients of the matrix H is n(n−k)d. Hence
we need:

t > nd.

If, in addition, the code is quasi-cyclic and its parity-check matrix is made of circulant
matrices of size p, the number of unknown coefficients is n(n− k)d/p. In this case

t >
nd

p
. (6.5)

Let us denote the probability of correctly guessing a kernel vector corresponding to an
error ei by Pei . This probability clearly depends on the dimension of the kernel of Āei(h).
Let us denote this dimension as Kei > 1: then, we know that |Ker(Āei(h))| = q

Kei . Then,

Pei =
qKei

qrd
= q−(rd−Kei). (6.6)

Clearly, a larger kernel of some of the matrices would make the attack faster. However,
there is no way to detect whether a matrix Āei(h) associated to an error ei would have
a larger kernel. Therefore we must assume the worst case, i.e. a kernel of dimension 1.
It remains open whether it is possible to devise a strategy to generate error vectors that
induce matrices of larger kernels.

Let us denote the probability of all vectors vei being correctly guessed by Pt. Then

Pt =

t∏
i=1

Pei > q
−(rd−1)t. (6.7)

After the kernel vectors have been guessed, system 6.4 becomes an over-determined
linear system over Fq. Solving it gives the coefficients of H. However, the basis F is still
unknown. Luckily, knowing the coefficients of H turns out to be enough to find the basis
F. It is possible to obtain the basis F from sufficiently many message-ciphertext pairs and
the syndrome equation. A high level description of the attack is given by Algorithm 21.

In Algorithm 21, through the procedure CollectErrors, the adversary interacts with
the decryption oracle D, by sending it encrypted messages and waiting for decryption
failures. Each time there is a failure, the adversary saves the error it used, until enough
errors that cause decryption failures are collected. The procedure CollectMEC adds an
extra cost to the adversary of one encryption.

Once the errors have been obtained the main part of the attack can begin. Note that
the collection of the errors can be done only once, and we need only a handful of errors
unlike in the Hamming metric (see Section 6.1.2 for a more detailed discussion).

Next, the function SolveH denotes the procedure for solving system 6.4 for some
guessed kernel elements corresponding to the obtained errors. If system 6.4 has a so-
lution, then SolveH will return this solution, otherwise it will return ⊥. This solution
is then used in SolveF together with ` valid triplets (mi, ei, ci) of messages, errors and
ciphertexts generated in the procedure CollectMEC. SolveF is a procedure whose main
goal is to find the basis F. However depending on the scheme, there might be other parts
of the secret key sk that can be found in this procedure. The value of ` is also dependent
on the scheme. We present an instantiation of SolveF for McNie [GKK+17] in Section 6.4.

6.1. A REACTION ATTACK 83

Algorithm 21: Reaction attack on LRPC codes.
Data: d, t, ` ∈ Z
Result: Matrix H of rank d

1 e1, e2, . . . , et ← CollectErrors(pk,D(sk)) ; // Collect errors from
decryption failures

2 repeat
3 ve1 , ve2 , . . . , vet ←R Frdq ; // Guess kernel vectors
4 h← SolveH(ve1 , ve2 , . . . , vet , e1, e2, . . . , et) ; // Solve system 6.4
5 if h 6= ⊥ then
6 {(mi, ei, ci)}`i=1 ← CollectMEC(pk) ; // Collect messages,

errors, ciphertexts
7 F, success← SolveF(h, {(mi, ei, ci)}`i=1) ; // Find basis F

8 else
9 success← ⊥;

10 end
11 until success;
12 H← Reconstruct(h, F); // Reconstruct the matrix H
13 return H;

We are now ready to state the total complexity of our attack. It is

Cost(React) =P−1
3 (Cost(Enc ∧ Dec))+

+P−1
t (Cost(SolveH) + `Cost(Enc) + Cost(SolveF)) (6.8)

where P3 = 1
qn−k+1−rd is the failure rate of the scheme (see Section 2.2.7.1), Pt =

q−(rd−1)t for a rank-d LRPC code and errors of rank r. In the case of random LRPC
codes t = nd and Cost(SolveH) = n3(n−k)3d3. When the code is quasi-cyclic and uses
circulant matrices of size p, t = nd

p
and Cost(SolveH) = n3(n−k)3d3

p3 . As said earlier,
Cost(SolveF) depends on the scheme, but usually, Cost(SolveF) < Cost(SolveH). See
Section 6.4 for more details about this.

6.1.2 – Analogies and Differences with the Hamming Metric. The cryptanalysis
procedure we have described in this section resembles the one proposed by Guo, Jo-
hansson and Stankovski in [GJS16], tailored for the McEliece cryptosystems using QC
Moderate-Density Parity-Check codes [MTSB13], decoded in the Hamming metric. Es-
sentially, these codes are a special case of Low-Density Parity-Check codes [Gal63], i.e.,
codes which are described by a parity-check matrix that contains a low number of nonzero
entries. These codes admit efficient decoding algorithms, like the Bit Flipping (BF) de-
coder or some of its variants, which are all based on the sparsity of the parity-check matrix.
In any case, the most popular decoders have a common structure, that is, they consist in
iterative procedures, in which at each iteration the error vector is partially guessed and
the syndrome gets coherently updated. This procedure goes on until a null syndrome is
obtained (decoding success), or a maximum number of iterations is reached (decoding
failure).

84 CHAPTER 6. A REACTION ATTACK ON LRPC CODES

As originally observed in [GJS16], the decoding failure probability somehow depends
on geometrical relations between the error vector and the secret parity-check matrix.
Then, reaction attacks can be mounted, by means of statistical tests on the decoding out-
comes of a large number of decryption queries. In particular, these tests are used to guess
the number of overlapping ones between columns in the secret key [SBCB19]; clearly, in
order to achieve statistical reliability, the number of observed decryption instances (i.e.,
the number of queries) needs to be sufficiently large. For instance, we can consider the
empirical results for the parameters that were broken in [GJS16]: the authors used, in
all successful attacks, more than 108 decryption queries. Considering a decoding failure
probability approximately equal to 10−4, this leads to a number of observed events of
decoding failures in the order of 104.

There are clear differences between reaction attacks in the Hamming metric and the
one we propose in this work. First of all, in the rank metric case, no statistical test is
needed: events of decoding failures are due (with overwhelming probability) to some
rank deficiency in the syndrome, and this fact is used to establish algebraic relations like
those in Equation 6.3. This difference is emphasized by the fact that the number of failure
events that an adversary needs to collect is significantly lower than the one that is needed
for the Hamming metric case.

Additionally, in the Hamming metric case, the feasibility of reaction attacks is some-
how related to the chosen decoder and to its setting [NJS19], in the sense that modi-
fications in the decoding procedure and/or slight variations in its setting might lead to
significant differences in the attack outcome. From this difference arises a question on
the existence of alternative LRPC decoding techniques, and on their eventual effect on
reaction attacks.

Another crucial difference is represented by the fact that, for Low-Density Parity-Check
codes, only few parity-check matrices can be used to efficiently perform decoding on a
given corrupted codeword. Indeed, for a given parity-check matrixH, each matrixH ′ =
WH, with W being non-singular, is again a valid parity-check matrix, but W preserves
the density only if it is a permutation matrix. If W is not a permutation matrix, in fact,
rows of H ′ correspond to linear combinations of rows of H: thus, their density is, with
overwhelming probability, larger than that of H. This means that only the actual H, or
a row-permuted version of it, guarantees efficient decoding of intercepted ciphertexts.
Then, when mounting a reaction attack, the adversary’s goal is that of reconstructing
exactly one of these matrices. In the rank metric case the number of parity-check matrices
that allow for efficient decoding techniques is significantly larger – we show in the next
section that any matrix of the form WH can be used to efficiently decode. In such a
case, we speak of equivalent keys: this fact, as we describe in the next section, allows for
significant reductions in the attack complexity.

6.2 — Equivalent Keys in LRPC Cryptosystems

In the previous section we described the basic attack that makes use of decryption fail-
ures. Now, we dig a little deeper, and show that due to existence of particular equivalent
keys, it is possible to speed up the attack by an exponential factor.

We start with a well known property of weight preservation in the rank metric. For
completeness we include a proof that will be useful later on.

6.2. EQUIVALENT KEYS IN LRPC CRYPTOSYSTEMS 85

Proposition 6.1. Let b ∈ Fnqm , and let W ∈ GLn(Fq). Then:

wt(b) = wt(b ·W).

In other words, weight is preserved under multiplication by non-singular matrices over
Fq. Recall that in Hamming metric, weight is preserved under multiplication by permu-
tation matrices.

Proof. Let wt(b) = d. This means that b can be represented as b = F · B̄, where F =
(F1, . . . , Fd), and 〈F1, . . . , Fd〉 is a basis of some d-dimensional subspace of Fnqm , and
B̄ ∈Md,n(Fq) is the (full rank) matrix representation of b. Now

b ·W = F · B̄ ·W = F · (B̄ ·W).

Since W is invertible, B̄ ·W has the same rank as B̄, i.e., wt(b ·W) = d.

As a direct consequence, we have the following:

Proposition 6.2. Let H ∈ Mn−k,n(Fqm) be the parity check matrix of an LRPC code C

of rank d. Let W ∈ GLn−k(Fq) be arbitrary. Then WH is a parity check matrix for the
same code C hence the same rank d.

Proof. Follows directly from the previous proposition, by considering the columns of H
as vectors of weight d.

Definition 6.3. Let P = (KeyGen,Enc,Dec) be an LRPC cryptosystem with a secret key
sk = (H, ·). We say that P has an equivalent key sk ′ = (H ′, · ′), if sk ′ 6= sk and sk ′ can be
used as a secret key for P with the same efficiency as sk. In particular, H ′ is of the same
rank as H and can be used in the decoding procedure with the same efficiency as H.

With some abuse of this definition, we will also say that H ′ is an equivalent key of H.

As a direct consequence of Proposition 6.2, we have:

Corollary 6.4. Let P = (KeyGen,Enc,Dec) be an LRPC cryptosystem with a secret
key sk = (H, ·) where H ∈ Mn−k,n(Fqm). Let W ∈ GLn−k(Fq) be arbitrary. Then,
sk ′ = (WH, ·) is an equivalent key for P.

A particular equivalent key is of our interest; later we present a key recovery attack
that recovers exactly such a key.

Let H ∈ Mn−k,n(Fqm) be the parity check matrix of an LRPC code C of rank d. We
rewrite H as:

H =



d∑
i=1

h1,1,iFi

d∑
i=1

h1,2,iFi · · ·
d∑
i=1

h1,n,iFi

...
...

. . .
...

d∑
i=1

hn−k,1,iFi

d∑
i=1

hn−k,2,iFi · · ·
d∑
i=1

hn−k,n,iFi


=

86 CHAPTER 6. A REACTION ATTACK ON LRPC CODES

=

d∑
i=1


 h1,1,i h1,2,i · · · h1,n,i

...
...

. . .
...

hn−k,1,i hn−k,2,i · · · hn−k,n,i


 Fi

i.e as

d∑
i=1

Ĥi · Fi =
d∑
i=1

(Ĥi1|Ĥi2) · Fi (6.9)

where Ĥi is the matrix of coefficients corresponding to the basis element Fi and Ĥi1 are
(n− k)× (n− k) matrices and Ĥi2 are (n− k)× k matrices.

Assume: Ĥ1 = (Ĥ11|Ĥ12) where Ĥ11 ∈ GLn−k(Fq), see Section 6.3.1.2 for more
details about the existence of invertible matrix. Then H ′ = Ĥ−1

11 · H is an equivalent key
and can be written as:

H ′ = (In−k|Ĥ ′12) · F1 +

d∑
i=2

(Ĥ ′i1|Ĥ
′
i2) · Fi (6.10)

where Ĥ ′i1 = Ĥ−1
11 · Ĥi1 and Ĥ ′i2 = Ĥ−1

11 · Ĥi2.

A crucial observation to make is that in the general case, the equivalent key H ′ is
determined by n(n−k)d−(n−k)2 coefficients, as opposed to n(n−k)d coefficients for
H. This observation can be used to reduce the size of the private key by storing H ′ instead
of H. It can also be used to speed up our reaction attack if we recover H ′ instead of H
because now we have fewer unknown coefficients, i.e., fewer variables in system 6.4. We
need however to show that the collected error vectors that correspond to a secret H are
also valid for the equivalent keys.

Proposition 6.5. For an arbitrary LRPC code C of length n, dimension k and rank d over
Fqm , with parity check matrix H, if an error vector e causes a decoding failure, then the
same error vector causes decoding failure for any equivalent WH where W ∈ GLn−k(Fq).

Proof. Recall that the error vector e in system 6.4 causes the syndrome to be of non-
maximal rank. By multiplying the syndrome equation by W ∈ GLn−k(Fq) we obtain
(WH) · e>i = W · s>, which from Proposition 6.1 means that the same error vectors cause
syndromes of non-maximal rank for the matrix WH. From Proposition 6.2 we know that
WH is an equivalent key.

6.2.0.1 – Equivalent Keys for Quasi-cyclic codes. Note that if H is quasi-cyclic, then so
are the matrices Ĥi in Equation 6.9. Then H ′ = Ĥ−1

11 · H is an equivalent key of the

form 6.10. This key H ′ is determined by n(n−k)d−(n−k)2

p
coefficients, as opposed to

n(n−k)d
p

coefficients for H.

6.3. EQUIVALENT KEY ATTACK ON QUASI-CYCLIC H 87

6.3 — Equivalent Key Attack on Quasi-Cyclic H

In the previous section we showed that under some plausible conditions, there exists
an equivalent key that is determined by fewer coefficients than the original one. Therefore
it makes sense to look for this key in our attack. In the case of QC codes, we need (n−k)2

p

fewer variables, so the number of kernel elements that we need to guess instead of 6.5
becomes

t >
nd− (n− k)

p
. (6.11)

The gain in the probability compared to 6.7 is a factor of q(rd−1)n−k
p , so looking for an

equivalent key accelerates the attack by an exponential factor.

6.3.1 – Probability of Success. The success of the attack described above depends
on two conditions being satisfied. First, recall that in Section 6.1 we assumed that all
collected errors are a result of the syndrome not being of full rank. The results from
Section 2.2.7.1 show that this is not always the case. However, as we will show shortly,
this happens with significant probability, so we can conclude that the feasibility of our
attack is not affected by these other types of decryption failures.

There is however one more place where the attack may fail: If we want to recover the
good equivalent key from Section 6.2, the success of the attack further depends on the
probability that such an equivalent key exists. As we will see later, this probability is also
big, so it is safe to assume that an appropriate equivalent key exists.

6.3.1.1 – Syndrome of non-full rank. We say that an observed decoding failure event
is useful if it is due to dim(S) < rd. This happens with probability

ρ =
P3

P1 + P2 + P3
=

1

1 + P1+P2
P3

, (6.12)

where the above probabilities depend on the system parameters and have been defined
in Section 2.2.7.1. Since we typically have P1,P2 � P3, we commonly have ρ ≈ 1. Now
the the attack will be successful only if all of the t collected errors are useful, i.e.,

Prs = ρ
t. (6.13)

6.3.1.2 – Existence of good equivalent keys. The attack presented in Section 6.3 requires
that a good equivalent key exists. Recall that in Equation 6.14, we assumed that Ĥ11 is
invertible matrix of size n− k. Actually, note that our attack does not make a difference
between the matrices Ĥl1, for l ∈ [1;d], so it is enough that at least one of these is an
invertible. In other words, our attack will find an equivalent key of the form:

H ′ = (In−k|Ĥ ′l2) · Fl +
d∑
i=1
i 6=l

(Ĥ ′i1|Ĥ
′
i2) · Fi (6.14)

for some l ∈ [1;d].
Since we are dealing with quasi-cyclic codes, the matrices Ĥl1, for l ∈ [1;d] are block

matrices of circulant matrices (block-circulant). Each of these circulant matrices can be

88 CHAPTER 6. A REACTION ATTACK ON LRPC CODES

uniquely represented by a polynomial. Now considering the determinant of the block-
circulant matrix as a polynomial and assuming it behaves as a random polynomial, we
can use the result from Proposition 2.26. Hence, the probability that the block-circulant
matrix is invertible is given by:

Prc =

∏τ
i=1 (q

diαi − qdi(αi−1))

qn−k
(6.15)

where xn−k − 1 = pα1
1 (x) · · · · · pαττ (x) is the factorization over Fq and di = deg(pi).

Now the probability that at least one of the matrices Ĥl1, for l ∈ [1;d] is invertible is

Prek = 1 − (1 − Prc)
d. (6.16)

Equation 6.16 gives the probability that an equivalent key of the special form exists.

Remark. We should emphasize that forcing the matrices Ĥl1, for l ∈ [1;d] to be singular
in the design of the scheme does not help hinder our attack. It only requires a small
modification on the equivalent key. The rest of the attack is essentially the same.

6.3.2 – A Quantum-Enhanced Attack. Since cryptosystems based on LRPC codes are
considered post-quantum, it makes sense to estimate their security against quantum-
enhanced attack, using the full power of quantum computers. A second look at our at-
tack immediately shows a possibility for a quantum speed-up using Grover’s algorithm
[Gro96]. Recall that Grover’s algorithm searches for an item in an unsorted database
satisfying a given condition. In our attack, a huge part consists of searching for elements
in appropriate kernels (see Equation (6.4)). The rest is just solving linear equations. It
follows that it is straightforward to apply Grover’s algorithm, and we can expect roughly
a quadratic speed-up in the search phase, i.e., we can find a vector in the kernel with a
number of trials which is about

Te = O(
√
qrd−1). (6.17)

We could also think to apply a quantum algorithm for solving the linear systems like
for example HHL [HHL09]. However, in our case, there is no benefit from doing so, since
HHL requires a large amount of quantum memory, and is not particularly suited for the
systems that we have. Therefore, we decided to simply “Groverize” our attack. For the
design of the oracle, we can reuse [SW16] with a small modification. The modification
is that in [SW16] the authors use multiple variables and the cost in number of gates is
2m(n2 + 2n). However, we are using a linear system which means that for our attack,
using an m× n matrix and a vector of length n, we have a gate complexity of mn.

6.4 — Case Study: McNie

6.4.1 – Recovering the Secret Key in McNie. Recall the generic structure of our at-
tack from Algorithm 21. The two main procedures are SolveH and SolveF. The first
recovers the coefficients of a key equivalent to H and is generic for LRPC cryptosystems.
SolveF, instead, finds the secret basis F and the rest of the secret key. In the case of McNie
the secret key is sk = (H, S) where S is an invertible (n− k)× (n− k) matrix.

6.4. CASE STUDY: MCNIE 89

Recall that for McNie (see Figure 6.1) it is true that:

c1H
> − c2S−1 = eH>.

Suppose that in SolveH we have recovered an equivalent key H ′ = T ·H for some T ∈
GLn−k(Fq). Multiplying the previous equation by T> we obtain

c1(T ·H)> − c2((T>)−1S)−1 = e(T ·H)>

i.e., sk ′ = (H ′, S ′) = (T · H, (T>)−1S) is an equivalent secret key for sk = (H, S), so we
can continue with recovering S ′ instead of S. Now we can rewrite the previous equation
as

(c1 − e)H
′> = c2S ′. (6.18)

Notice that if we know a triple (m, e, (c1, c2)) of message, error and ciphertext (which of
course anyone can generate from the public key), once the coefficients ofH ′ are known,
the remaining unknowns in Equation 6.18 are the (n − k)2 coefficients of S ′ and the d
basis elements of F, all in Fqm . Furthermore, seen as a system of equations over Fqm in
these unknowns, Equation 6.18 is a system ofn−k linear equations. Hence, by generating
at least d (n−k)2+d

n−k e = n−k+1 valid triples (mi, ei, (c1, c2)i) we can form an overdeter-
mined system in (n−k)2 +d variables. Solving this system will give the remaining parts
of the secret key. Thus in the case of McNie we can define SolveF as the procedure that
solves this system. Its cost is Cost(SolveF) = ((n − k)2 + d)3 using schoolbook matrix
operations. The cost of n− k+ 1 encryptions is negligible in comparison.

Based on the results from this section and Sections 6.1 and 6.3 we have estimated our
attack complexity for the McNie parameters given in their NIST submission [GKK+17].
The results are given in Table 6.1. The attack column at Table 6.1 is built upon Equa-
tion 6.8 considering Cost(SolveF) = ((n − k)2 + d)3 and Cost(SolveH) as n

3(n−k)3d3

p3

since the cost of n− k+ 1 encryptions is negligible. This gives us the total cost of

2(n− k+ 1)
qn−k+1−rd + q((rd−1)t)

(n3(n− k)3d3

p3 + (n− k)2 + d3
)

.

We remark that the improvement provided by Grover is not directly over the entire equa-
tion but just over q((rd−1)t). The probability column refers to probability of success and
probability that an equivalent key exists as shown in Section 6.3.1.2.

We recall that we do not exploit any specific properties of McNie as the attack in [LT18]
which dramatically decrease the security of the scheme, we provide a general reaction
attack against LRPC cryptosystems. We provide an implementation of the attack using
SAGE Math [Th19], and verified that, under the assumption that the kernel vectors have
been found, an equivalent key can be successfully found, the code is available at: https:
//lrpc.cryptme.in/

https://lrpc.cryptme.in/
https://lrpc.cryptme.in/

90 CHAPTER 6. A REACTION ATTACK ON LRPC CODES

Table 6.1: McNie parameters proposed to the first round of the NIST competition, complexities and success
probability of our proposed attack. The security and attack are in log2 scale.

n k d r q m
Dec.

Failure
Security

(bits)
Attack

(Classical)

Attack
(Quantum)

t
Success
Prs ·Prek

93 62 3 5 2 37 2−17 128 136 80 8 0.5 · 0.8
105 70 3 5 2 37 2−20 128 137 81 8 2−10 · 0.74
111 74 3 7 2 41 2−17 192 185 105 8 0.08 · 0.87
123 82 3 7 2 41 2−20 192 186 105 8 2−15 · 0.875
111 74 3 7 2 59 2−17 256 185 105 8 1 · 0.875
141 94 3 9 2 47 2−20 256 234 130 8 2−22 · 0.875
60 30 3 5 2 37 2−16 128 165 95 10 0.63 · 0.67
72 36 3 5 2 37 2−21 128 166 96 10 2−20 · 0.75
76 38 3 7 2 41 2−18 192 226 126 10 2−6 · 0.875
84 42 3 7 2 41 2−21 192 227 127 10 2−37 · 0.623
76 38 3 7 2 53 2−18 256 226 126 10 1 · 0.875
88 44 3 8 2 47 2−20 256 257 142 10 2−8 · 0.875

PART II

QUANTUM CRYPTANALYSIS

Chapter 7

Background on Quantum Cryptanalysis

Before we start with the idea about quantum cryptanalysis we need to understand a lit-
tle bit of quantum computing. One definition for quantum computing can be: It is the
field that studies the computational power and other properties of computers built using
quantum-mechanical principles. As has been mentioned before, the impact of a quan-
tum computer in cryptography can be negative such as breaking the currently deployed
cryptography and that leads us to the area of quantum cryptanalysis.

We can define quantum cryptanalysis as the study of using quantum computers to
break cryptosystems. It is not only limited to breaking cryptosystems but includes also
understanding the impacts of the quantum algorithms in cryptosystems helping to estab-
lish more secure and robust systems. Given this definition we can go a little bit deeper and
include that one important area of quantum cryptanalysis is the estimation of resources.

One can see resources as the number of quantum gates and qubits for running a
quantum algorithm. For example, finding preimages of a hash function using Grover’s
algorithm or running Shor’s algorithm for solving the Discrete Logarithm Problem (DLP).

This part of the thesis is organized as follows: First, we will give an explanation about
quantum gates and quantum circuits. Second, we will present Grover’s algorithm since
we will need this knowledge for the application of it. At last, we show how to use Grover’s
algorithm for finding preimages in parallel with low communication cost and no use of
memory.

7.1 — Quantum Computation

In this section, we will briefly explain the notation of quantum computation. Quan-
tum computation takes advantage of quantum mechanics which can be described using
quantum states. In summary, the quantum state is a superposition of classical states;
mathematically, it can be written as a vector of amplitudes. In order to change these
amplitudes one can perform a measurement or a unitary operation. It is common to use
the Dirac notation to represent a quantum state.

The superposition means that the quantum state can assume any of the classical states
and by “classical” state we mean a state in which the system can be found if we observe it,
i.e., if we measure the quantum state. A quantum state, or just state |Ψ〉 is a superposition
of classical states and it can be written as

|Ψ〉 = α0 |0〉+ α1 |1〉+ · · ·+ αN−1 |N− 1〉 . (7.1)

94 CHAPTER 7. BACKGROUND ON QUANTUM CRYPTANALYSIS

Here αi is a complex number and it is called the amplitude of |i〉 in |Ψ〉 and N is the
number of classical states that the system can assume.

7.1.1 – Qubits. In classical computation, the smallest unit of information that a com-
puter has is a bit, which can be 0 or 1. The quantum bit or qubit is the same thing but for
a quantum computer. However, in the quantum case the qubit does not assume only 0 or
1, it can stay in a superposition between 0 and 1. Consider a system with 2 basis states

and call them |0〉 and |1〉. We identify these basis states with two orthogonal vectors
(

1
0

)
and

(
0
1

)
, respectively. A single qubit can be in any superposition

α0 |0〉+ α1 |1〉 , where |α0|
2 + |α1|

2 = 1. (7.2)

Accordingly, a single qubit belongs to a vector space C2.

7.2 — Quantum Circuits

A quantum circuit follows the general idea of classical circuit replacing the elemen-
tary “classical” gates such as AND, OR, XOR and NOT by elementary quantum gates. A
quantum gate is a unitary transformation on qubits. However, it is hard to do interest-
ing computations with a single qubit. Like classical computers, quantum computers use
registers that are composed of multiple qubits.

7.2.1 – Quantum registers. Quantum registers are qubit strings whose length deter-
mines the amount of information that they can store. In superposition, each qubit in the
register is in a superposition of |0〉 and |1〉, and consequently a register of n qubits is in
a superposition of all 2n possible bit strings that could be represented using n “classical”
bits. The state space of a size-n quantum register is a linear combination of 2n basis
vectors, each of length 2n:

|ψn〉 =
2n−1∑
i=0

ai |i〉 (7.3)

Example 7.2.1. A three qubit register has the following expansion:

|ψ2〉 = a0 |000〉+a1 |001〉+a2 |010〉+a3 |011〉+a4 |100〉+a5 |101〉+a6 |110〉+a7 |111〉
(7.4)

or in a vector form, using the computational basis:

|ψ2〉 = a0



1
0
0
0
0
0
0
0


+a1



0
1
0
0
0
0
0
0


+a2



0
0
1
0
0
0
0
0


+a3



0
0
0
1
0
0
0
0


+a4



0
0
0
0
1
0
0
0


+a5



0
0
0
0
0
1
0
0


+a6



0
0
0
0
0
0
1
0


+a7



0
0
0
0
0
0
0
1


(7.5)

We recall that each possible bit configuration in the quantum superposition is denoted
by the tensor product of its counterpart qubits.

7.2. QUANTUM CIRCUITS 95

As with single qubits, the squared absolute value of the amplitude associated with a
given bit string is the probability of observing that bit string upon collapsing the register
to a classical state, that is, when the register is measured the amplitudes of all 2n possible
bit configurations of an n-bit register sum to one:

2n−1∑
i=0

|ai|
2 = 1. (7.6)

7.2.2 – Quantum gates. In classical computing, binary values, as stored in a register,
pass through logic gates that, given a certain binary input, produce a certain binary out-
put. Mathematically, classical logic gates are described as boolean functions. Quantum
logic gates present a certain similarity with classical gates. When a quantum logic gate is
applied to quantum registers it maps the current state to another state, transforming the
state until it reaches a final state, i.e., the measured state.

From a mathematical point of view, quantum logic gates can be represented as trans-
formation matrices, or linear operators, applied to a quantum register by multiplying the
transformation matrix with the matrix representation of the register. All the quantum
operations that correspond to quantum gates must be unitary. A complex matrix U is
unitary, if U−1 = U†, where U† is the conjugate transpose: U† = U

T
. It easy to check

that UU† = U†U = I. Unitary operators preserve the inner product of two vectors,
geometrically preserving the lengths of the vectors and the angle between them:

〈u|U†U |v〉 = 〈u| I |v〉 = 〈u|v〉 . (7.7)

The composition of two unitary operators is also unitary. Given unitary transformation
matrices U and V:

(UV)† = V†U† = V−1U−1 = (UV)−1. (7.8)

Since all evolution in a quantum system can be described by unitary matrices and all
unitary transformations are invertible, all quantum computation is reversible. For a com-
putation to be reversible the output of the computation contains sufficient information to
reconstruct the input, i.e. no input information is erased.

There are several quantum gates each one with a specific function. The most common
ones are the bitflip gate X, phaseflip gate Z, Hadamard gate H, controlled-not (CNOT)
gate and Toffoli gate. In this thesis, we will be using the Hadamard H, CNOT and Toffoli
gate. Figure 7.1 shows the representation of these three gates, i.e., 7.1a is a CNOT gate,
7.1b is a Toffoli gate and 7.1c is a Hadamard gate.

The CNOT operates on two qubits. It flips the target qubit if and only if the control
qubit is |1〉. Figure 7.1a shows this operation where |t〉 is flipped if |c〉 is equal to 1. The
Toffoli gate operates on three qubits, its operation is similar to CNOT but we add one extra
control bit. It flips the target qubit if and only if the two control qubits are |1〉. This gate
is important because it is complete for classical reversible computation: any computation
can be implemented by a circuit of Toffoli gates. The Hadamard gate operates only in
one qubit but it is crucial for quantum computation. This gate maps the basis state |0〉 to

1√
2
(|0〉 + |1〉) and |1〉 to 1√

2
(|0〉 − |1〉), which means that we create the “superposition”

of the basis states. The superposition can be described as the probability to measure 0 or
1, for more details about superposition and physics aspects of quantum computation and
information see [LSP98].

96 CHAPTER 7. BACKGROUND ON QUANTUM CRYPTANALYSIS

|c〉
|t〉

|c〉
|t⊕ c〉

(a) Graphic representation of CNOT
gate.

|a〉
|b〉
|c〉

|a〉
|b〉
|c⊕ ab〉

(b) Graphic representation of Toffoli
gate.

|0〉 H
1√
2
(|0〉+ |1〉)

(c) Graphic representation of Hadamard gate.

Figure 7.1: Quantum gates.

7.3 — Grover’s Algorithm

Grover’s algorithm [Gro96] is one of the most popular quantum algorithms among
cryptographers. This algorithm provides a quadratic speedup for searching an element
in an unordered database. Definition 7.1 provides a definition of the search problem.

Definition 7.1. For N = 2n, we are given a function f : {0, 1}N → {0, 1} which assumes
the value 0 for almost all entries. The goal is to find an x such that f(x) = 1.

In the classical setting, one needs to perform Θ(N) queries for finding x, the number
of queries varies with the randomness in the search. In the quantum setting, that is using
Grover’s algorithm, one needs to perform O(

√
N) queries. Figure 7.2 gives a high level

abstraction of Grover’s algorithm.

|0〉⊗n
H

H

H

G G

. . .

. . .

. . .

G G

O(
√

2n)

Figure 7.2: High level circuit of Grover’s algorithm

In a more detailed level of the algorithm, we can summarize the steps as:
1 Let N = 2n. Initialize the register with n qubits to |ψ〉 = |0〉⊗n;

7.3. GROVER’S ALGORITHM 97

2 Put the system into an equal superposition state applying Hadamard, i.e. |ψ〉 =
|H〉⊗n |0〉⊗n;

3 Repeat π4
√
N times:

a) Apply Grover step G;
4 The answer is the measurement of the register |ψ〉.

The Grover step G consists of two steps which are an oracle reflectionUf and an additional
reflection Us. The oracle reflection Uf is a function that will call an Oracle O which
returns f(x) = 1 for the correct answer and f(x) = 0 otherwise. The reflection Uf
performs a flipping of the phase over the marked items and can be computed as:

Uf |x〉 = (−1)f(x) |x〉 .

The additional reflection Us performs inversion about the average, transforming the
amplitude of each state so that it is as far above the average as it was below the average
prior to the transformation, and vice versa. The Us can be described as application of
Hadamard transform, followed by a conditional phase shift that shifts every state except
|0〉 by −1, followed by another Hadamard transform. It is possible to represent the phase
shift by the unitary operator 2 |0〉 〈0|− I, which will map to the following state when the
value is 0:

[2 |0〉 〈0|− I] |0〉 = 2 |0〉 〈0|0〉− I = |0〉 (7.9)

and it will map to the following state when the value is not 0:

[2 |0〉 〈0|− I] |x〉 = 2 |0〉 〈0|x〉− I = − |x〉 . (7.10)

Using the notation presented in the summary |ψ〉 = |H〉⊗n |0〉⊗n and the entire dif-
fusion transform, we have:

H⊗n[2 |0〉 〈0|− I]H⊗n = 2H⊗n |0〉 〈0|H⊗n − I = 2 |ψ〉 〈ψ|− I (7.11)

and the entire Grover iteration can be represented as:

G = [2 |ψ〉 〈ψ|− I]O. (7.12)

The implementation of O, that is f(x), depends on the search problem. In fact, f(x)
will determine the depth of the circuit. In Chapter 9, we will show a quantum circuit for
finding preimages of a hash function.

In summary, if one wants to build a quantum circuit for Grover’s algorithm it is nec-
essary to consider the costs besides the constructions of the oracle, i.e., it is necessary to
consider the costs for the initial Hadamard transformation and the costs for Grover’s iter-
ation. However, for most of the cases is safe to assume that the cost for applying Grover’s
algorithm is O(

√
N).

Chapter 8

AES in a Quantum Computer

As we mentioned in Chapter 7, quantum computations need to be reversible. Further-
more, the oracle O present in Grover’s algorithm needs to be implemented as a reversible
function. One interesting case for this thesis is the implementation of AES. A reversible
version of AES has already been shown in [GLRS16].

In this chapter, we will show an improvement in the number of gates to the AES im-
plementation proposed in [GLRS16]. Our improvement is during the SubBytes function,
where we propose a new circuit for squaring and a different addition chain for comput-
ing the multiplicative inverse. Since the publication of [GLRS16] two papers, [ASAM18]
and [KHJ18], already provided some improvements. Our improvements are bigger than
both of these. Moreover, we provide an implementation using a library called libquan-
tum1. Libquantum is a C library for the simulation of quantum mechanics created by
Björn Butscher and Hendrik Weimer. The library has a special focus on quantum com-
puting. Libquantum presents an easy-to-use interface and a range of quantum gates such
as CNOT, Toffoli, and Hadamard, and one can define a new gate by giving a matrix that
describes the gate.

8.1 — The AES Block Cipher

We first will give a brief explanation about AES. Later on, we will give details about the
classical and quantum implementation of each function. AES is a block cipher, designed
by Daemen and Rijmen [DR13]. It is based on Rijndael but only provides 128-bit blocks.
The key length can be 128, 192 and 256. We will be considering just AES-128, i.e., AES
with a key size of 128 bits. The main reason for this consideration is that libquantum
does not support more than 128 qubits.

AES has different transformations operating on an intermediate result that is called
State. The state can be seen as an array of bytes, with four rows and four columns. The
number of rounds Nr depends on the size of the key, e.g., AES-128 performs 10 rounds,
AES-192 performs 12 rounds and AES-256 performs 14 rounds.

In the encryption process with AES, one needs first to perform key addition, denoted
by AddRoundKey, followed by Nr − 1 executions of Round, and finally one application
of FinalRound. The Round function is the application of 4 transformations which are

1http://libquantum.de/

100 CHAPTER 8. AES IN A QUANTUM COMPUTER

SubBytes, ShiftRows, MixColumns and AddRoundKey. The FinalRound consists of the ap-
plication of SubBytes, ShiftRows and AddRoundKey. The code below shows in a pseudo
C language, how those rounds are put together. One advantage of AES is that one just
needs to implement the transformation functions and then reuse them in the rounds.

1 AES(State , CipherKey) {
2 KeyExpansion (CipherKey , ExpandedKey) ;
3 AddRoundKey(State , ExpandedKey [0]) ;
4 f o r (i = 1; i < Nr ; i++){
5 Round(State , ExpandedKey[i]) ;
6 }
7 FinalRound (State , ExpandedKey[Nr]) ;
8 }

Listing 8.1: High level description of AES.

8.1.1 – SubBytes. The SubBytes operation is a non-linear byte substitution and oper-
ates on each byte of the state. In classical computation, it is common to use tables for this
operation. Those substitution tables are known as S-boxes. For AES the S-Box is defined
using inversion on F∗28 and an affine transformation α 7→ a · α−1 + b for α ∈ F∗28 and
0 7→ b for some a,b ∈ F∗28 . For full details see [DR13].

8.1.1.1 – Quantum implementation. Unfortunately, the SubBytes operation is more com-
plicated in a quantum setting than a classical setting. For instance, the cost for imple-
menting and accessing tables is not exactly known. One option is the solution presented
in [GLRS16] where a state byte is an element α ∈ F2[x]/(x

8 + x4 + x3 + x + 1). Then
one first computes the multiplicative inverse of α followed by the affine transformation.

8.1.2 – ShiftRows. The ShiftRows step operates on the rows of the state, it cyclically
shifts the bytes of each row. The first row is left unchanged. The second row is shifted
one to the left, the third row is shifted two to the left. The last and fourth row is shifted
three to the left.

8.1.2.1 – Quantum implementation. The quantum implementation of this step does
not use any gate to be performed. This step is a permutation of the AES state and it does
not add any new gate to the circuit. However, one needs to rearrange the position of the
subsequent gates assuring that they receive the correct input.

8.1.3 – MixColumns. As the name suggests the MixColumns step operates on the
columns of the state. In fact, it is a bricklayer permutation operating on the state col-
umn by column. Each column is seen as a polynomial over F28 and is then multiplied
modulo z4 + 1 with a fixed polynomial c(z), for more details about the selection of c(z)
see [DR13]. This operation can be seen as a matrix multiplication by a vector. The matrix
is generated by the fact that c(z) is a fixed polynomial and it can be found in the original
description of AES provided by NIST [Nat01] and in [DR13].

8.1.3.1 – Quantum implementation. In a quantum setting, this step can be implemented
similar to the classical setting, i.e., the step is applied to an entire column of the state and
this means that it operates on 32 qubits at a time. In [GLRS16], the authors adapt the

8.2. BACKGROUND ON THE QUANTUM LANGUAGES 101

creation of a LUP-type decomposition matrix using just CNOT gates to replicate the result
of the original matrix in [DR13].

8.1.4 – AddRoundKey. In this step, an expanded key is combined with the state, i.e.,
the state is modified by combining it with the round key using the bitwise XOR operation.
We regard Listing 8.1, where the first step is to expand the key into Nr + 1 round keys,
a round key is denoted by ExpandedKey[i], 0 6 i 6 Nr.

8.1.4.1 – Quantum implementation. The implementation in a quantum circuit of Ad-
dRoundKey can be done with a parallel execution of CNOT gates. To be more precise, for
a key of 128 bits the circuit generated contains only 128 CNOT gates.

8.2 — Background on the Quantum Languages

In this chapter, we present the implementation of AES using libquantum and the trans-
lator from a C based language to openQASM [CBSG17]. However, let us first introduce
the languages. We will only present usage of CNOT and Toffoli gates since the AES im-
plementation does not use other gates.

8.2.1 – Syntax of libquantum. In Listing 8.2, we present the generation of a quan-
tum register using the function quantum_new_qureg and we give two parameters. The
first parameter is the value to which the register is initialized; in our case it is 6 that is
represented by 0110 in binary, the second parameter is the number of qubits that the
register will hold; in our example 4 qubits.

After the creation of a quantum register, we apply the CNOT gate using function quan-
tum_cnot, which is similar to the description of the gate, that is, one gives the position of
the control and target qubits as integers starting from 0 on the right. The third argument
is the register to which the gate is applied. In our example, this appears in Line 5 where
we select the qubit at position 1 as our control and qubit at position 0 as our target.

The last relevant line for the example is a call of quantum_toffoli which is a Toffoli gate,
and it has four parameters, the first two numbers represent the control qubits followed
by the target qubit and the register to which the gate is applied.

Figure 8.1 shows the result of the computation in Listing 8.2, i.e., the figure shows
initial state followed by the application of CNOT which changes the qubit at position
0. After that, we have the application of the Toffoli gate, which uses the qubits at posi-
tions 1 and 2 and flips the qubit at position 0. The last quantum function that we use is
“quantum_measure” which performs a measurement on the whole quantum register, the
result is an integer value. At last, we call “quantum_delete_qureg” which is not a function
for quantum computing. The function deletes a quantum register and frees its allocated
memory.

1 #inc lude <quantum . h>
2 i n t main(void) {
3 quantum_reg q_reg = quantum_new_qureg (6 , 4) ;
4

5 quantum_cnot (1 , 0 , &q_reg) ;
6

7 quantum_tof fo l i (1 , 2 , 0 , &q_reg) ;
8

102 CHAPTER 8. AES IN A QUANTUM COMPUTER

9 i n t r e s u l t = quantum_measure(®) ;
10

11 quantum_delete_qureg (q_reg) ;
12

13 re turn 0;
14 }

Listing 8.2: Basic generation of a quantum register and usage of CNOT and Toffoli gates using libquantum.

1.000000 + 0.000000i |6〉 (1.000000e+ 00) (|0110〉)
1.000000 + 0.000000i |7〉 (1.000000e+ 00) (|0111〉)
1.000000 + 0.000000i |6〉 (1.000000e+ 00) (|0110〉)

Figure 8.1: Result of the circuit presented in Listing 8.2.

8.2.2 – Syntax of OpenQASM. Listing 8.3 shows the same circuit as Listing 8.2 using
the low level language OpenQASM. However, the reader can notice that on lines 4 and 5
there are two “extra” gates, the “x” gate is just a NOT gate used to initialize bits 1 and 2
to value 1. In an analogous way, we can say that openQASM is similar to the Assembler
language for classical computers.

1 OPENQASM 2.0 ;
2 inc lude " qe l i b1 . inc " ;
3 qreg reg [4] ;
4 x reg [1] ;
5 x reg [2] ;
6 cx reg [1] , reg [0] ;
7 ccx reg [1] , reg [2] , reg [0] ;

Listing 8.3: Basic generation of a quantum register and usage of CNOT and Toffoli gates using openQASM.

8.2.3 – openQASM translator. As it was mentioned, we first implemented AES using
libquantum which is a C based language that simulates quantum computations. One
advantage of libquantum is that it is a library written in C and follows the code style.
If one is familiar with C standards then it is easy to write a circuit using the library.
However, this library is limited in tools for analyzing a quantum circuit, i.e., it does not
present any algorithm for optimization or for checking the circuit. One could use the
algorithms presented in [Amy13] to optimize a circuit. Fortunately, the implementations
of those algorithms are included in openQASM [CBSG17].

In order to translate the libquantum code to openQASM, we develop a small translator
that is able to identify the type of gate and the qubits of the operation and translates into
openQASM language.

The translator works as follows: First, it parses the file, this is done line by line and
in this step the translator saves each line as a text string and it removes empty lines.
After that, it starts from the beginning of the list with the generation of each gate, it uses

8.3. IMPROVED AES IMPLEMENTATION 103

regular expressions for finding the type of gate and generates an object that knows which
type of gate it is, the qubits of control and qubit of target and saves each gate in a list of
gates. In the final step, the translator gets the list of gates and writes each gate and all
qubits in a valid openQASM syntax. Listing 8.4 shows the functions for getting the lines,
and transforming CNOT and Toffoli gates in our intermediate representation. The code
for all the functions is available at https://quantum.cryptme.in.

1 def _ _ g e t _ l i n e s (s e l f) :
2 l i n e = s e l f . fp . r ead l i ne ()
3 cnt = 1
4 l i n e s = []
5 while l i n e :
6 i f l i n e . s t r i p () :
7 l i n e s . append (l i n e . s t r i p ())
8 l i n e = s e l f . fp . r ead l i ne ()
9 cnt += 1

10 re turn l i n e s
11 def __transform (s e l f) :
12 cnot_present = re . f i nd (" cnot ") ;
13 t o f f o l i _ p r e s e n t = re . f i nd (" t o f f o l i ") ;
14 i f cnot_present :
15 s e l f . __so lve_cnot ()
16 e l i f t o f f o l i _ p r e s e n t :
17 s e l f . _ _ s o l v e _ t o f f o l i ()
18 e l s e :
19 r a i s e GateUnkownError (" unknown gate : " , s e l f . l i n e)
20 def __so lve_cnot (s e l f) :
21 r e s u l t = re . sub (" [a−z_ &;()] " , " " , s e l f . l i n e)
22 r _ s p l i t = r e s u l t . s t r i p () . s p l i t (" , ")
23 s e l f . q b i t s _ c o n t r o l . append (r _ s p l i t [0])
24 s e l f . q b i t _ t a r g e t = r _ s p l i t [1]
25 s e l f . gate_type = GatesEnum .CNOT
26 def _ _ s o l v e _ t o f f o l i (s e l f) :
27 r e s u l t = re . sub (" [a−z_ &;()] " , " " , s e l f . l i n e)
28 r _ s p l i t = r e s u l t . s t r i p () . s p l i t (" , ")
29 s e l f . q b i t s _ c o n t r o l . append (r _ s p l i t [0])
30 s e l f . q b i t s _ c o n t r o l . append (r _ s p l i t [1])
31 s e l f . q b i t _ t a r g e t = r _ s p l i t [2]
32 s e l f . gate_type = GatesEnum . TOF

Listing 8.4: Functions for getting lines and extracting information from the gates.

8.3 — Improved AES Implementation

We implemented the AES circuit presented in [GLRS16] using the language and tools
presented before. We notice that the implementation could save gates during the com-
putation of the inverse. We give more details further in the text.

https://quantum.cryptme.in

104 CHAPTER 8. AES IN A QUANTUM COMPUTER

In our implementation, we use a total of 15 276 gates for one round of AES, in which
7 168 are Toffoli gates, 8 044 are CNOT gates and 64 NOT gates. More specifically, we
will now give the number of gates for each function of AES. As stated before ShiftRows
does not require any gates.

8.3.1 – SubBytes. The first function that AES performs is SubBytes. It is possible to
break this function into two and quantify the number of gates for the inverse and the
affine function. The inverse can be computed using α−1 = α254. Note that this form
of computing the inverse by exponentiation means that α = 0 need not be handled
separately.

In [GLRS16], the authors compute the inverse using

α−1 = α254 = ((α · α2) · (α · α2)4 · (α · α2)16 · α64)2.

Using this approach and returning all ancillas clean uses 8 multiplications and 29 squar-
ings. In our implementation, the inverse function uses a different addition chain and it
requires 7 multiplications and 19 squarings. Like [GLRS16] we use 25 ancilla qubits.

In order to show where we can perform fewer squarings we first show the computation
of α−1 = α254 presented in [GLRS16]. Figure 8.2 shows the inverse used in [GLRS16],
the symbols on the step column means: (*) when a multiplication between two val-
ues occurs, (^) when a squaring or multi-squaring occurs, (^^) when an out-of-place
squaring or multi-squaring occurs which cost 8 extra CNOTS. An out-of-place squaring is
the operation (a, 0) 7→ (a,a2) while in place squaring is a→ a2. A multi-squaring maps
a 7→ a2n for some n ∈ Z. After a verification, we can notice that there are 8 multipli-
cations and 29 squarings to compute and uncompute the multiplicative inverse. In the
original implementation, the authors claim that it is possible to perform all squarings in
and out of place using 275 CNOT gates. However, we could not verify this since there are
no more details about those operations other than the circuit for a single squaring and
an out-of-place squaring. Furthermore, it is easily possible to improve this addition chain
by swapping the order of steps 14 and step 15 and decrease 2 squarings and saving one
multiplication at the expense of an out-of-order 4-th power in step 5.

Figure 8.3 shows our proposal for computing the inverse. In the end, we compute 19
squarings and 7 multiplications.

Figure 8.4 shows a circuit for squaring an element. Each squaring uses 10 CNOT gates
as shown in Figure 8.4, squaring can be achieved as shown below:

Given a polynomial p(x) = a7x
7 + a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x
1 + a0x

0

with ai ∈ F2 and p(x) ∈ F2[x]/(x
8 + x4 + x3 + x + 1), we compute p(x)2. At first, the

polynomial will be p(x)2 = a7x
14 + a6x

12 + a5x
10 + a4x

8 + a3x
6 + a2x

4 + a1x
2 + a0x

0

and we need to reduce the polynomial using x8 + x4 + x3 + x + 1. We can rewrite the
elements larger than x7 as:

x8 ≡ x4 + x3 + x+ 1 mod x8 + x4 + x3 + x+ 1

x9 ≡ x5 + x4 + x2 + x mod x8 + x4 + x3 + x+ 1

x10 ≡ x6 + x5 + x3 + x2 mod x8 + x4 + x3 + x+ 1

x12 ≡ x8 + x7 + x5 + x4 mod x8 + x4 + x3 + x+ 1

x14 ≡ x10 + x9 + x7 + x6 mod x8 + x4 + x3 + x+ 1

8.3. IMPROVED AES IMPLEMENTATION 105

````````````Step
Qubits position

0 . . . 7 8 . . . 15 16 . . . 23 24 . . . 31 32 . . . 39

0 α

1 ^^ α α2

2 * α α2 α3

3 ^^ α α2 α3 α12

4 * α α2 α3 α12 α15

5 * α α2 α12 α15

6 ^ α α2 α48 α15

7 * α α2 α63 α48 α15

8 ^^ α α63 α48 α15

9 ^ α64 α63 α48 α15

10 * α64 α127 α63 α48 α15

11 ^ α64 α254 α63 α48 α15

12 ^ α α254 α63 α48 α15

13 * α α254 α48 α15

14 ^^ α α254 α3 α48 α15

15 ^ α α254 α3 α12 α15

16 * α α254 α3 α12

17 ^^ α α254 α3

18 ^^ α α254 α3 α2

19 * α α254 α2

20 ^^ α α254

Figure 8.2: Reversible computation of α−1 = α254 proposed in [GLRS16].

After a first step of reduction, it is possible to notice that some elements continue
bigger than x7, for example x14, which needs one more step of reduction. We show
below how x14 can be reduced:

x14 ≡ x10 + x9 + x7 + x6 mod x8 + x4 + x3 + x+ 1

≡ x6 + x5 + x3 + x2 + x5 + x4 + x2 + x+ x7 + x6 mod x8 + x4 + x3 + x+ 1

≡ x7 + x4 + x3 + x mod x8 + x4 + x3 + x+ 1

In the end we can rewrite a7x
14 +a6x

12 +a5x
10 +a4x

8 +a3x
6 +a2x

4 +a1x
2 +a0x

0 as:

a7(x
7 + x4 + x3 + x) + a6(x

7 + x5 + x3 + x+ 1) + a5(x
6 + x5 + x3 + x2)+

a4(x
4 + x3 + x+ 1) + a3x

6 + a2x
4 + a1x

2 + a0x
0,

which can be rearranged to be

(a7 + a6)x
7 + (a5 + a3)x

6 + (a6 + a5)x
5 + (a7 + a4 + a2)x

4+

(a7 + a6 + a5 + a4)x
3 + (a5 + a1)x

2 + (a7 + a6 + a4)x+ (a6 + a4 + a0)x
0.

(8.1)



106 CHAPTER 8. AES IN A QUANTUM COMPUTER

````````````Step
Qubits position

0 . . . 7 8 . . . 15 16 . . . 23 24 . . . 31 32 . . . 39

0 α

1 ^^ α α2

2 * α α2 α3

3 ^^ α α2 α3 α12

4 ^^ α α3 α12

5 * α α15 α3 α12

6 ^ α α60 α3 α12

7 ^^ α α60 α3

8 * α α60 α3 α63

9 ^ α α60 α3 α126

10 * α α60 α3 α126 α127

11 ^ α α60 α3 α126 α254

12 ^ α α60 α3 α63 α254

13 * α α60 α3 α254

14 ^^ α α60 α3 α12 α254

15 ^ α α15 α3 α12 α254

16* α α3 α12 α254

17 ^^ α α2 α3 α12 α254

18 ^^ α α2 α3 α254

19 * α α2 α254

20 ^^ α α254

Figure 8.3: Reversible computation of α−1 = α254 proposed in this chapter.

a0 : a0
a1 : a4
a2 : a1
a3 : a5
a4 : • • • a2
a5 : • • • a6
a6 : • • a3
a7 : • • a7

Figure 8.4: Squaring of an element of F[x]2/(x8 + x4 + x3 + x+ 1) using quantum gates.

In Figure 8.4 we show our squaring circuit matching Equation 8.1. We bring to the
reader’s attention that in the figure the execution of the circuit is sequential from left to
right and that the output has a different order from the input. Our circuit uses 10 CNOTs
instead of 12 CNOTs in [GLRS16].

The multiplication uses the same circuit as the original provided in [GLRS16]; Fig-
ure 8.5 shows its circuit. We did an attempt to improve this using the tools in open-

8.3. IMPROVED AES IMPLEMENTATION 107

a0 • • • • • • • •
a1 • • • • • • • •
a2 • • • • • • • •
a3 • • • • • • • •
a4 • • • • • • • •
a5 • • • • • • • •
a6 • • • • • • • •
a7 • • • • • • • •
b0 • • • • • • • •
b1 • • • • • • • •
b2 • • • • • • • •
b3 • • • • • • • •
b4 • • • • • • • •
b5 • • • • • • • •
b6 • • • • • • • •
b7 • • • • • • • •
c0 • • •
c1 • • •
c2 • • •
c3 • • •
c4 • • •
c5 • • •
c6 • • •
c7

Figure 8.5: Multiplication circuit provided in [GLRS16]

QASM [CBSG17] and [Amy13]. However, this does not decrease the number of gates in
the multiplication circuit, which are 64 Toffoli gates and 21 CNOT gates.

In total, the inverse function uses 7 ·21+19 ·10+8 ·8 = 401 CNOT and 7 ·64 = 448
Toffoli gates. The affine function uses a total of 24 CNOT and 4 NOT gates using the LUP
decomposition of the matrix given in [Nat01] as follows

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1


=



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0





1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 0 0 0
0 0 0 1 1 1 0 0
0 1 1 1 0 0 1 0
0 0 1 1 1 0 0 1





1 0 0 0 1 1 1 1
0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


.

The total number of gates for SubBytes is 4 NOT, 425 CNOT and 448 Toffoli gates per
state, in AES-128 we have a total of 16 states. The total number in one round is 64 NOT,
6 800 CNOT and 7 168 Toffoli gates. If the SubBytes function is applied sequentially on
the 16 states the 24 ancillas suffice for the entire round. Higher levels of parallelism and
thus reduced depth increase the ancilla usage.

Comparison. To compare with [GLRS16] we need to express our result in terms of T-
gates and Clifford gates. We use the same decomposition as [GLRS16] and decompose
1 Toffoli gate as 7 T gates + 8 Clifford gates. We remark that this gives an upper bound
on the number of T gates as we use the generic decomposition; the circuits above could
be built using T-gates directly and possibly use fewer T gates. In [AG04], the authors
show the Gottesman-Knill theorem, which states that NOT and CNOT gates belong to the
Clifford group, thus we can use our NOT and CNOT gates for comparison.

Table 8.1 shows the comparison with the circuit designs in the literature. The values
from [GLRS16] were acquired directly from their paper. For the values in [ASAM18]
and [KHJ18] we use the same decomposition of Toffoli gates since they present their
results in Toffoli and CNOT gates. In the squaring count we consider 4-th power and 64-
th power as 2 and 6 squarings, respectively. For [KHJ18] we use the 12-CNOT squaring
function as no better one was stated before our work. Note that [ASAM18] has a squaring
circuit with 19 CNOTs.

8.3.2 – Other functions. After SubBytes, we execute the MixColumns function. Based
on [GLRS16] the function uses a total of 279 CNOT gates. The function is called 4 times
as we described in Section 8.1.3. The total number of gates for the MixColumns step is
1 116 CNOT gates. At last, we have the AddRoundKey function, which uses 128 CNOT

108 CHAPTER 8. AES IN A QUANTUM COMPUTER

Table 8.1: Comparison of circuit designs for finding multiplicative inverse.

Work in [GLRS16] Work in [ASAM18] Work in [KHJ18] This work
Number of qubits 40 64 40 40

Number of multiplications 8 7 7 7
Number of squarings 29 14 33 19

Gates for one S-Box
3 584 T 3 136 T 3 136 T 3 136 T

4 569 Clifford 4 072 Clifford 4 082 Clifford 3 866 Clifford

gates. We use a total of 7 168 Toffoli gates, 8 044 CNOT gates and 64 NOT gates for one
round of AES.

Chapter 9

Grover’s Algorithm and Preimage
Search

9.1 — Introduction

Fix a function H. For any element x in the domain of H, the value H(x) is called the
image of x, and x is called a preimage of H(x).1

Many attacks can be viewed as searching for preimages of specified functions. Con-
sider, for example, the function H that maps an RSA private key (p,q) to the public key
pq. Formally, define P as the set of pairs (p,q) of prime numbers with p < q, and define
H : P → Z as the function (p,q) 7→ pq. Shor’s quantum algorithm efficiently finds the
private key (p,q) given the public key pq; in other words, it efficiently finds a preimage
of pq.

As another example, consider a protocol that uses a secret 128-bit AES key k, and that
reveals the encryption under k of a plaintext known to the attacker, say plaintext 0. Given
this ciphertext AESk(0), a simple brute-force attack takes a random key x as a guess for
k, computes AESx(0), and checks whether AESx(0) = AESk(0). If AESx(0) 6= AESk(0)
then the attack tries again, for example replacing x with x+ 1 mod 2128.

Within, e.g., 2100 guesses the attack has probability almost 2−28 of successfully guess-
ing k. We say “almost” because there could be preimages of H(k) other than k: i.e., it is
possible to have H(x) = H(k) with x 6= k. This gives the attack more chances to find a
preimage, but it means that any particular preimage selected as output is correspondingly
less likely to be k. Typical protocols give the attacker a reasonably cheap way to see that
these other preimages are not in fact k, and then the attacker can simply continue the
attack until finding k.

This brute-force attack is not specific to AES, except for the details of how one com-
putes AESk(0) given k. The general strategy for finding preimages of a function is to
check many possible preimages. In this chapter we focus on faster attacks that work in
the same level of generality. Some specific functions, such as the function (p,q) 7→ pq
mentioned above, have extra structure allowing much faster preimage attacks, but we do
not discuss those special-purpose attacks further.

1This chapter is based on a paper with Daniel J. Bernstein and it was published at Selected Areas in Cryp-
tography 2017 [BB17] and it was presented at Quantum Cryptanalysis (Dagstuhl Seminar 17401) [MSSS18].

110 CHAPTER 9. GROVER’S ALGORITHM AND PREIMAGE SEARCH

9.1.1. Multiple-target preimages. Often an attacker is given many images, say t images
H(x1), . . . ,H(xt), rather than merely a single image. For example, x1, . . . , xt could be
secret AES keys for sessions between t pairs of users, where each key is used to encrypt
plaintext 0; or they could be secret keys for one user running a protocol t times; or they
could be secrets within a single protocol run.

The t-target preimage problem is the problem of finding a preimage of at least one of
y1, . . . ,yt; i.e., finding x such that H(x) ∈ {y1, . . . ,yt}. A solution to this problem often
constitutes a break of a protocol; and this problem can be easier than the single-target
preimage problem, as discussed below.

Techniques used to attack the t-target preimage problem are also closely related to
techniques used to attack the well-known collision problem: the problem of finding dis-
tinct x, x ′ with H(x) = H(x ′).

The obvious way to attack the t-target preimage problem is to choose a random x
and see whether H(x) ∈ {y1, . . . ,yt}. Typically y1, . . . ,yt are distinct, and then the
probability that H(x) ∈ {y1, . . . ,yt} is the sum of the probability that H(x) = y1, the
probability that H(x) = y2, and so on through the probability that H(x) = yt. If x is
a single-target preimage with probability about 1/N then x is a t-target preimage with
probability about t/N.

Repeating this process for s steps takes a total of s evaluations ofH on distinct choices
of x, and has probability about st/N of finding a t-target preimage, i.e., high probability
after N/t steps. This might sound t times faster than finding a single-target preimage,
but there are important overheads in this algorithm, as we discuss next.

9.1.2. Communication costs and parallelism. Real-world implementations show that,
as t grows, the algorithm stated above becomes bottlenecked not by the computation of
H(x) but rather by the check whether H(x) ∈ {y1, . . . ,yt}.

One might think that this check takes constant time, looking up H(x) in a hash table
of y1, . . . ,yt, but the physical reality is that random access to a table of size t becomes
slower as t grows. Concretely, when a table of size t is laid out as a

√
t ×
√
t mesh in a

realistic circuit, looking up a random table entry takes time proportional to
√
t.

Furthermore, for essentially the same cost as a memory circuit capable of storing and
retrieving t items, the attacker can build a circuit with t small parallel processors, where
the ith processor searches for a preimage of yi independently of the other processors.
Running each processor for N/t fast steps has high success probability of finding a t-
target preimage and takes total time N/t, since the processors run in parallel.

The “parallel rho method”, introduced by van Oorschot and Wiener in 1994 [vOW94],
does better. The van Oorschot–Wiener circuit has size p and reaches high probability after
only N/pt fast steps. For example, with p = t, this circuit has size t and reaches high
probability after only N/t2 steps.

There are p small parallel processors in this circuit, arranged in a
√
p × √p square.

There is also a parallel “mesh” network allowing each processor to communicate quickly
with the processors adjacent to it in the square. Later, as part of the description of our
quantum multi-target preimage-search algorithm, we will review how these resources
are used in the parallel rho method. The analysis also shows how large p and t can be
compared to N.

9.1.3. Quantum attacks. If a random input x has probability 1/N of being a preimage
of y then brute force finds a preimage of y in about N steps. Quantum computers do

9.2. REVERSIBLE COMPUTATION 111

better: specifically, Grover’s algorithm [Gro96] finds a preimage of y in only about
√
N

steps as explained in Chapter 7.
However, increased awareness of communication costs and parallelism has produced

increasingly frequent objections to this quantitative speedup claim. For example, NIST’s
“Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptography
Standardization Process” [NIS16] states security levels for AES-128, AES-192, and AES-
256 that provide

“ substantially more quantum security than a naïve analysis might suggest.
For example, categories 1, 3 and 5 are defined in terms of block ciphers,
which can be broken using Grover’s algorithm, with a quadratic quantum
speedup. But Grover’s algorithm requires a long-running serial computation,
which is difficult to implement in practice. In a realistic attack, one has to
run many smaller instances of the algorithm in parallel, which makes the
quantum speedup less dramatic.”

Concretely, Grover’s algorithm has high probability at finding a preimage if it uses p small
parallel quantum processors, each running for

√
N/p steps, as in [GR03]. The speedup

compared to p small parallel pre-quantum processors is only
√
N/p, which for reasonable

values of p is much smaller than
√
N.

Furthermore, when the actual problem facing the attacker is a t-target preimage prob-
lem, the parallel rho machine with p small parallel pre-quantum processors reaches high
success probability after only N/pt steps. This extra factor t can easily outweigh the√
N/p speedup from Grover’s algorithm.
For example, a parallel rho machine of size p finds collisions in only

√
N/p steps. This

is certainly better than running Grover’s algorithm for
√
N/p steps.

Brassard, Høyer, and Tapp [BHT98] claimed a faster quantum algorithm to find col-
lisions. Their algorithm chooses t ≈ N1/3, takes t random inputs x1, . . . , xt, computes
the corresponding images y1, . . . ,yt, and then builds a new function H ′ defined as fol-
lows: H ′(x) = 0 if H(x) ∈ {y1, . . . ,yt}, otherwise H ′(x) = 1. A random input is an
H ′-preimage of 0 with probability approximately 1/N2/3, so Grover’s algorithm finds an
H ′-preimage of 0 after approximately N1/3 steps.

However, Bernstein [Ber09] analyzed the communication costs in this algorithm and
in several variants, and concluded that no known quantum collision-finding algorithms
were faster than the pre-quantum parallel rho method.

NIST has stated that resistance to multi-key attacks is desirable. Our results show
that simply using Grover’s algorithm for single-target preimage search is not optimal in
this context. NIST’s post-quantum security claims for AES-128, AES-192, and AES-256
assume that it is optimal, and therefore need to be revised.

9.2 — Reversible Computation

We recall that a Toffoli gate maps bits (x,y, z) to (x,y, z ⊕ xy), where ⊕ means
exclusive-or.

A reversible n-bit circuit is an n-bit-to-n-bit function expressed as a composition of a
sequence of Toffoli gates on selected bits. We assume that adjacent Toffoli gates on sepa-
rate bits are carried out in parallel: our model of time for a reversible circuit is the depth
of the circuit rather than the total number of gates. To model realistic communication

112 CHAPTER 9. GROVER’S ALGORITHM AND PREIMAGE SEARCH

Oracle
calls

p small
processors,

free
communication

p small
processors,

realistic
communication

Single-target
preimage N N/p N/p

pre-
quantum

√
N

√
N/p

√
N/p

post-
quantum

Multi-target
preimage N/t N/pt N/pt

√
N/t

√
N/pt

√
N/pt1/2

Collision
√
N

√
N/p

√
N/p

3
√
N

√
N/p

√
N/p

Figure 9.1: Overview of costs of pre-quantum and post-quantum attacks. Circled blue items are new results
in this chapter. Lower-order factors are omitted. Pre-quantum single-target preimage attacks: brute force
plus simple parallelization. Post-quantum single-target preimage attacks: Grover’s algorithm [Gro96] plus
simple parallelization [GR03]. Pre-quantum multi-target preimage attacks: brute force and the parallel rho
method [vOW94]. Post-quantum multi-target preimage attacks: [HRS16] for oracle calls, this chapter for par-
allel methods. Pre-quantum collision attacks: the rho method and the parallel rho method. Post-quantum
collision attacks: [BHT98] for oracle calls, plus the parallel rho method.

costs, we lay out the n bits in a square, and we require each Toffoli gate to be applied to
bits that are laid out within a constant distance of each other.

Let H be a function from {0, 1}b to {0, 1}b, where b is a nonnegative integer. An a-
ancilla reversible circuit for H is a reversible (2b + a)-bit circuit that maps (x,y, 0) to
(x,y⊕H(x), 0) where x and y each have b bits and where the 0 has a bits. The behavior
of this circuit on more general inputs (x,y, z) is not relevant.

Grover’s method, given a reversible circuit for H, produces a quantum preimage-
search algorithm. This algorithm uses s serial steps of H computation and negligible
overhead, and has probability approximately s2/N of finding a preimage, if a random
input to H has probability 1/N of being a preimage.

In subsequent sections we convert the reversible circuit for H into a reversible circuit
for a larger function H ′ using approximately

√
t steps on t small parallel processors. H ′

is designed so that
• a random input toH ′ has probability approximately t5/2/N of being anH ′-preimage

and

9.3. REVERSIBLE ITERATION 113

• an H ′-preimage produces a t-target H-preimage as desired.
Applying Grover’s method to H ′, with s ≈

√
N/pt3/2, uses overall

√
N/pt1/2 steps on

t small parallel processors, and has probability approximately t/p of finding a preimage.
A machine with p/t parallel copies of Grover’s method has high probability of finding
a preimage and uses

√
N/pt1/2 steps on p small parallel processors. Figure 9.1 shows

our result highlighted and the known pre-quantum and post-quantum attacks considering
several aspects such as: number of oracle calls, parallelism without communication cost
and parallelism with communication cost.

9.3 — Reversible Iteration

As in the previous section, let H be a function from {0, 1}b to {0, 1}b, where b is a
nonnegative integer. Assume that we are given a reversible circuit for H using a ancillas
and gate depth g (see, e.g., the circuit in [GLRS16] and Chapter 8). This section reviews
the Bennett–Tompa technique [Ben89] to build a reversible circuit for Hn, where n is a
positive integer, using a+O(b log2 n) ancillas and gate depth O(gn1+ε). Here ε can be
taken as close to 0 as desired, although the O constants depend on ε.

As a starting point, consider the following reversible circuit forH2 using a+b ancillas
and depth 3g:

time 0: x y 0 0
time 1: x y H(x) 0
time 2: x y⊕H2(x) H(x) 0
time 3: x y⊕H2(x) 0 0

Each step here is a reversible circuit for H, and in particular the last step adds H(x) to
H(x), obtaining 0 (recall that ⊕ means xor).

More generally, if H uses a ancillas and depth g, and H ′ uses a ′ ancillas and depth
g ′, then the following reversible circuit forH ′ ◦H uses max (a,a ′+b) ancillas and depth
2g+ g ′:

time 0: x y 0 0
time 1: x y H(x) 0
time 2: x y⊕H ′(H(x)) H(x) 0
time 3: x y⊕H ′(H(x)) 0 0

Bennett now substitutes Hm and Hn for H and H ′ respectively, obtaining the following
reversible circuit for Hm+n using max (am,an + b) ancillas and depth 2gm + gn:

time 0: x y 0 0
time 1: x y Hm(x) 0
time 2: x y⊕Hm+n(x) Hm(x) 0
time 3: x y⊕Hm+n(x) 0 0

Bennett suggests taking n = m or n = m + 1, and then it is easy to prove by induction
that an = a+dlog2 neb and gn 6 3dlog2neg 6 3nlog2 3g. For example, computingH2k(x)
uses a+ kb ancillas and depth 3kg.

More generally, with credit to Tompa, Bennett suggests a way to reduce the exponent
log2 3 arbitrarily close to 1, at the expense of a constant factor in front of b. For example,
one can start from the following reversible circuit for H3 using a+ 2b ancillas and depth

114 CHAPTER 9. GROVER’S ALGORITHM AND PREIMAGE SEARCH

5g:
time 0: x y 0 0 0
time 1: x y H(x) 0 0
time 2: x y H(x) H2(x) 0
time 3: x y⊕H3(x) H(x) H2(x) 0
time 4: x y⊕H3(x) H(x) 0 0
time 5: x y⊕H3(x) 0 0 0

Generalizing straightforwardly from H3 to H ′′ ◦ H ′ ◦ H, and then replacing H,H ′,H ′′

with H`,Hm,Hn, produces a reversible circuit for H`+m+n using max (a` + b ,am +
2b,an+2b) ancillas and depth 2g`+2gm+gn. Splitting evenly between `,m,n reduces
log2 3 ≈ 1.58 to log3 5 ≈ 1.46. (An even split is not optimal: for a given ancilla budget
one can afford to take a` larger than am and an. See [Kni95] for detailed optimizations
along these lines.) By starting withH4 instead ofH3 one reduces the exponent to log4 7 ≈
1.40, using, e.g., a + 9b ancillas and depth 567g to compute H64. By starting with H8

one reduces the exponent to log8 15 ≈ 1.30; etc.

9.4 — Reversible Distinguished Points

As above, letH be a function from {0, 1}b to {0, 1}b, where b is a nonnegative integer;
and assume that we are given an a-ancilla depth-g reversible circuit for H.

Fix d ∈ {0, 1, . . . ,b}. We say that x ∈ {0, 1}b is distinguished if its first d bits are 0.
The rho method iterates H until finding a distinguished point or reaching a prespec-

ified limit on the number of iterations, say n iterations. The resulting finite sequence
x,H(x),H2(x), . . . ,Hm(x), either

• containing exactly one distinguished point Hm(x) and having m 6 n or
• containing zero distinguished points and having m = n,

is the chain for x, and its final entry Hm(x) is the chain end for x.
This section explains a reversible circuit for the function that maps x to the chain end

for x. This circuit has essentially the same cost as the Bennett–Tompa circuit from the
previous section.

Define Hd : {0, 1}b → {0, 1}b as follows:

Hd(x) =

{
x if the first d bits of x are 0

H(x) otherwise.

A reversible circuit for Hd is slightly more costly than a reversible circuit for H, since it
needs an “OR” between the first d bits of x and a selection between x and H(x).

If the chain for x is x,H(x),H2(x), . . . ,Hm(x) then the iterates

x,Hd(x),H2
d(x), . . . ,Hmd (x),Hm+1

d (x), . . . ,Hnd(x)

are exactly x,H(x),H2(x), . . . ,Hm(x),Hm(x), . . . ,Hm(x). Hence the chain end for x,
namely Hm(x), is exactly Hnd(x). We compute Hnd reversibly by substituting Hd for H in
the previous section.

If x is chosen randomly andH behaves randomly then one expects each newH output
to have chance 1/2d of being distinguished. To have a reasonable chance that the chain
end is distinguished, one should take n on the scale of 2d: e.g., n = 2d+1. If n is very

9.5. SORTING ON A MESH NETWORK 115

large then chains will usually fall into loops before reaching distinguished points, but we
will later take small n, roughly

√
t for t-target preimage search.

9.4.1 – Reversible parallel distinguished points. Define b,H,a,g,d,n as before,
and let t be a positive integer. This section explains a reversible circuit for the function
that maps a vector (x1, . . . , xt) of b-bit strings to the corresponding vector (Hnd(x1), . . . ,
Hnd(xt)) of chain ends.

This circuit is simply t parallel copies of the circuit from the previous section, where
the ith copy handles xi. The depth of the circuit is identical to the depth of the circuit in
the previous section. The size of this circuit is t times larger than the size of the circuit in
the previous section.

Communication in this circuit is only inside the parallel computations of H. There is
no communication between the parallel circuits, and there is no dependence of commu-
nication costs upon t.

9.5 — Sorting on a Mesh Network

Define S(c1, c2, . . . , ct), where c1, c2, . . . , ct are b-bit strings, as (d1,d2, . . . ,dt), where
d1,d2, . . . ,dt are the same as c1, c2, . . . , ct in lexicographic order.

This section presents a reversible computation of S using O(t(b + (log t)2)) ancillas
and O(t1/2(log t)2) steps. Each step is a simple local operation on a two-dimensional
mesh, repeated many times in parallel. We follow the general sorting strategy from
[BBG+13] but choose different subroutines.

We start with odd-even mergesort [Bat68]. This algorithm is a sorting network: i.e., a
sequence of comparators, where each comparator sorts two objects. Odd-even mergesort
sorts t items using O((log t)2) stages, where each stage involves O(t) parallel compara-
tors. For comparison, [BBG+13, Table 2] mentions bitonic sort, which is slower than
odd-even mergesort, and AKS sort, which is asymptotically faster but slower for any rea-
sonable size of t.

To make odd-even mergesort reversible, we record for each of the O(t(log t)2) com-
parators whether the inputs were out of order, as in [BBG+13, Section 2.1]. This uses
O(t(log t)2) ancillas. The comparators themselves use O(tb) ancillas.

The comparators in odd-even mergesort are not local when items are spread across
a two-dimensional mesh. We fix this as in [BBG+13, Section 2.3]: before each stage,
we permute the data so that the stage involves only local comparators. Each of these
permutations is a constant determined by the structure of the sorting network; for odd-
even mergesort each permutation is essentially a riffle shuffle.

The permutation strategy suggested in [BBG+13, Section 2.3] is to apply any sorting
algorithm built from local operations. For a two-dimensional mesh, [BBG+13, Table 2]
suggests “Bubble/Insertion sort”, but it is not at all clear which two-dimensional algorithm
is meant here; the classic forms of bubble sort and insertion sort are not parallelizable.
The same table also says that these are “sorting networks”, but most of the classic forms
of bubble sort and insertion sort include conditional branches. We suggest using the
Schnorr–Shamir algorithm [SS86], which has depth approximately 3

√
t. It seems likely

that an ad-hoc riffle algorithm would produce a better constant here.

116 CHAPTER 9. GROVER’S ALGORITHM AND PREIMAGE SEARCH

9.6 — Multi-target Preimages

Fix images y1, . . . ,yt. We build a reversible circuit that runs in a quantum computer
and it performs the following function f(x):

• Input a vector (x1, . . . , xt).
• Compute, in parallel, the chain ends for x1, . . . , xt: i.e., Hnd(x1), . . . ,Hnd(xt).
• Precompute the chain ends for y1, . . . ,yt.
• Sort the chain ends for x1, . . . , xt and the chain ends for y1, . . . ,yt.
• If there is a collision, say a collision between the chain end for xi and the chain end

for yj: recompute the chain for xi, checking each chain element to see whether it
is a preimage for yj.

• Output 0 if a preimage was found, otherwise 1.
As mentioned in Section 7.3, Grover’s algorithm requires a search function; in our

case this function is the circuit given by f(x).
This circuit uses O(a + b log2 n + tb + t(log t)2) ancillas. The chain computation

has depth O(gn1+ε), and the sorting has depth O(t1/2(log t)2 logb), where O(logb)
accounts for the cost of a b-bit comparator.

If a chain for xi ends with a distinguished point, and the chain includes a preimage
(before this distinguished point) for yj, then the chain for yj will end with the same
distinguished point. The recomputation will then find this preimage. The number of
such chains is proportional to t (with a constant-factor loss for chains that end before a
distinguished point), the number of elements in the chains is proportional to nt (with a
constant factor reflecting the length of chains before distinguished points); the chance of
a particular preimage being one of these elements is 1/N; and there are t preimages, for
an overall chance roughly nt2/N.

We take n ≈
√
t, so the circuit uses O(a + tb + t(log t)2) ancillas and has depth

O(gt1/2+ε/2 + t1/2(log t)2 logb); one can also incorporate b,g, ε into the choice of n to
better balance the two terms in this depth formula. The chance that the circuit finds a
preimage is roughly t5/2/N, as mentioned earlier. Finally, we apply p/t parallel copies
of Grover’s method to this circuit, each copy using approximately

√
N/pt3/2 iterations,

i.e., depth O(
√
N/pt1/2(gtε/2 + (log t)2 logb)), to reach a high probability of finding a

t-target preimage.

Summary

Selected Constructive and Destructive Approaches to Post-Quantum
Cryptography

The word cryptography comes from the Greek terms krypto, which means “hidden”
or “secret” and graphein, which means “writing”. This means that cryptography can be
defined as the art of hidden messages. In the past, cryptography had an important role
in human history such as protecting Julius Caesar’s messages. Nowadays, cryptography
is also used as a tool to protect data in payments, messaging in phones or securing access
to a website. Modern cryptography relies on mathematical properties for being reliable
and efficient. Those properties allow a user to reveal a message for the correct recipient
and hide it from others. However, an attacker can try to decrypt the message without
the key, the most naive way is to try to find the right key by testing all the keys possible.
In a computer, the most common way to represent a key is by using a binary string and
the search means finding the correct binary string of length k, i.e., an attacker needs to
perform 2k operations for finding the correct key. It is common to denote k as the security
level of the cryptographic scheme. The situation changes if the attacker has a quantum
computer. For example, as will be seen in this thesis, a search with a quantum computer
can lower this value in half. In a more powerful attack, Shor’s algorithm is able to break
cryptosystems based on the integer factoring problem or the discrete logarithm problem.
In this thesis, I studied mathematical problems that are used in cryptosystems that are
considered safe against quantum computers. A second area of work is the development
of attacks using quantum algorithms, which contains the details of the design and the
consequences of these attacks in the currently deployed cryptography.

Part I: Code-Based Cryptography. In the first part of the thesis, I present the back-
ground of linear codes and code-based cryptography. This includes a description of the
McEliece cryptosystem, one of the oldest post-quantum cryptosystems. Second, I explain
how it is possible to speed up the arithmetic of a special type of matrices, called dyadic
matrices. More specifically, these matrices are used in a McEliece-based cryptosystem
which uses a different linear code instead of Goppa codes, called Generalized Srivastava
codes. In summary, the usage of this code allows smaller keys for McEliece, i.e., the keys
have 19712 and 6400 bytes for public and private keys, respectively. Third, I show two
attacks that are applied to code-based cryptography. The first attack is a side-channel
attack. In this way, Chapter 5 shows that it is possible to apply a known side-channel
attack to a relatively new implementation and gather enough information to recover the

encrypted message. After introducing the attack, the chapter shows that it is possible to
find roots of a polynomial in a way that avoids the attack. Chapter 6 shows how a reac-
tion attack is used against cryptosystems based on Low Rank Parity Check (LRPC) codes.
A reaction attack consists of sending several random messages, waiting for the result and
collecting the messages that the receiver was not able to decode. More specifically, we
could exploit the structure of LRPC codes since a message cannot be decoded if certain
conditions are not achieved.

Part II: Quantum Cryptanalysis. The second part of the thesis consists of quantum
cryptanalysis. Before going into depth on quantum algorithms and the construction of
quantum circuits, Chapter 7 discusses some aspects underlying the development of quan-
tum computing such as the concepts of qubits, quantum registers and Grover’s algorithm.
Afterwards, Chapter 8 describes how to build the Advanced Encryption Standard (AES)
algorithm in a quantum computer. While at the first glance it can seem easy to imple-
ment a well studied algorithm, quantum computation presents certain constraints such
as reversibility. Therefore, it is not possible to reuse any AES construction, it is necessary
to build an entire reversible circuit, Chapter 8 improves the number of operations and
storage of the reversible circuit present in the literature. Finally, the thesis covers the
construction of a quantum algorithm for finding preimages of a hash function and shows
how to parallelize this algorithm. Furthermore, the algorithm developed shows that it
is possible to run it with low communication costs between the quantum processors and
without using any quantum memory. This is done by applying a new combination of
distinguished points and Grover’s algorithm.

Curriculum Vitae

Gustavo Souza Banegas was born on November 29, 1988, in Panambi, Brazil. In 2012, he
completed his bachelor’s degree in Computer Science at Universidade Federal de Santa
Catarina. In the same year, he started his master at Universidade Federal de Santa Cata-
rina which he completed in October of 2015 under the supervision of Ricardo Custódio
and Daniel Panario.

At the end of 2015, he started his PhD project in the Coding theory and Cryptography
group at the Eindhoven University of Technology under the supervision of Tanja Lange
and Daniel J. Bernstein. The project was funded by the European Union’s Horizon 2020
research and innovation program under the Marie Skłodowska-Curie grant agreement
No. 643161. In 2016, he organized the first Quantum Research Retreat in Eindhoven
and in 2018 he organized a second Quantum Research Retreat in Tenerife. During his
PhD, he gained experience in industry with two internships: one at Riscure in Delft and
another at CryptoExperts in Paris.

Bibliography

[ABB+] Nicolas Aragon, Paulo S. L. M. Barreto, Slim Bettaieb, Loïc Bidoux, Olivier Blazy,
Jean-Christophe Deneuville, Philippe Gaborit, Shay Gueron, Tim Güneysu, Car-
los Aguilar Melchor, Rafael Misoczki, Edoardo Persichetti, Jean-Pierre Tillich,
Valentin Vasseur, and Gilles Zémor. BIKE - Bit Flipping Key Encapsulation. NIST
Post-Quantum Cryptography Project: First and Second Rounds Candidate Algo-
rithms. URL: https://bikesuite.org.

[ABG+17a] Nicolas Aragon, Jean-Christophe Blazy, Olivier Deneuville, Philippe Gaborit,
Adrien Hauteville, Olivier Ruatta, Jean-Pierre Tillich, and Gilles Zémor. LAKE,
December 2017. NIST Post-Quantum Cryptography Project: First Round Candi-
date Algorithms. URL: https://pqc-rollo.org/.

[ABG+17b] Nicolas Aragon, Jean-Christophe Blazy, Olivier Deneuville, Philippe Gaborit,
Adrien Hauteville, Olivier Ruatta, Jean-Pierre Tillich, and Gilles Zémor. LOCKER,
December 2017. NIST Post-Quantum Cryptography Project: First Round Candi-
date Algorithms. URL: https://pqc-rollo.org/index.html.

[ABG+19] Nicolas Aragon, Olivier Blazy, Philippe Gaborit, Adrien Hauteville, and Gilles
Zémor. Durandal: A rank metric based signature scheme. In Yuval Ishai and
Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019 - 38th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III, vol-
ume 11478 of Lecture Notes in Computer Science, pages 728–758. Springer, 2019.
doi:10.1007/978-3-030-17659-4_25.

[ADPS16] Erdem Alkim, Léo Ducas, Thomas Pöppelmann, and Peter Schwabe.
Post-quantum key exchange – A new hope. In Thorsten Holz and Stefan
Savage, editors, 25th USENIX Security Symposium, USENIX Security 16, Austin,
TX, USA, August 10-12, 2016., pages 327–343. USENIX Association, 2016.
URL: https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/alkim.

[AG04] Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer circuits.
Phys. Rev. A, 70:052328, Nov 2004. doi:10.1103/PhysRevA.70.052328.

[Al-01] Abdolrahman Kh. Al-Jabri. A statistical decoding algorithm for general linear
block codes. In Bahram Honary, editor, Cryptography and Coding, 8th IMA In-

https://bikesuite.org
https://pqc-rollo.org/
https://pqc-rollo.org/index.html
http://dx.doi.org/10.1007/978-3-030-17659-4_25
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/alkim
http://dx.doi.org/10.1103/PhysRevA.70.052328

122 BIBLIOGRAPHY

ternational Conference, Cirencester, UK, December 17-19, 2001, Proceedings, vol-
ume 2260 of Lecture Notes in Computer Science, pages 1–8. Springer, 2001.
doi:10.1007/3-540-45325-3_1.

[Amy13] Matthew Amy. Algorithms for the Optimization of Quantum Circuits. PhD thesis,
University of Waterloo, 2013. URL: http://hdl.handle.net/10012/7818.

[ASAM18] Mishal Almazrooie, Azman Samsudin, Rosni Abdullah, and Kussay N. Mut-
ter. Quantum reversible circuit of AES-128. Quantum Information Processing,
17(5):112, Mar 2018. doi:10.1007/s11128-018-1864-3.

[Bar94] Alexander Barg. Some new NP-complete coding problems. Probl. Peredachi Inf.,
30:23–28, 1994. (in Russian).

[Bar97] Alexander Barg. Complexity issues in coding theory. Electronic Colloquium on
Computational Complexity (ECCC), 4(46), 1997.

[Bat68] Kenneth E. Batcher. Sorting networks and their applications. In Proceedings of
the April 30–May 2, 1968, Spring Joint Computer Conference, AFIPS ’68 (Spring),
pages 307–314, New York, NY, USA, 1968. ACM. doi:10.1145/1468075.
1468121.

[BB17] Gustavo Banegas and Daniel J. Bernstein. Low-communication parallel quan-
tum multi-target preimage search. In Carlisle Adams and Jan Camenisch, ed-
itors, Selected Areas in Cryptography - SAC 2017 - 24th International Confer-
ence, Ottawa, ON, Canada, August 16-18, 2017, Revised Selected Papers, volume
10719 of Lecture Notes in Computer Science, pages 325–335. Springer, 2017.
doi:10.1007/978-3-319-72565-9_16.

[BBB+] Magali Bardet, Élise Barelli, Olivier Blazy, Rodolfo Canto Torres, Alain Cou-
vreur, Philippe Gaborit, Ayoub Otmani, Nicolas Sendrier, and Jean-Pierre Tillich.
BIGQUAKE - BInary Goppa QUAsi-cyclic Key Encapsulation. NIST Post-Quantum
Cryptography Project: First Round Candidate Algorithms. URL: https://
bigquake.inria.fr/.

[BBB+18] Gustavo Banegas, Paulo S. L. M. Barreto, Brice Odilon Boidje, Pierre-Louis
Cayrel, Gilbert Ndollane Dione, Kris Gaj, Cheikh Thiécoumba Gueye, Richard
Haeussler, Jean Belo Klamti, Ousmane Ndiaye, Duc Tri Nguyen, Edoardo Per-
sichetti, and Jefferson E. Ricardini. DAGS: key encapsulation using dyadic GS
codes. J. Mathematical Cryptology, 12(4):221–239, 2018. doi:10.1515/
jmc-2018-0027.

[BBB+19] Gustavo Banegas, Paulo S. L. M. Barreto, Brice Odilon Boidje, Pierre-
Louis Cayrel, Gilbert Ndollane Dione, Kris Gaj, Cheikh Thiécoumba Gueye,
Richard Haeussler, Jean Belo Klamti, Ousmane Ndiaye, Duc Tri Nguyen, Edoardo
Persichetti, and Jefferson E. Ricardini. DAGS reloaded: Revisiting dyadic
key encapsulation. In Baldi et al. [BPS19], pages 69–85. doi:10.1007/
978-3-030-25922-8_4.

http://dx.doi.org/10.1007/3-540-45325-3_1
http://hdl.handle.net/10012/7818
http://dx.doi.org/10.1007/s11128-018-1864-3
http://dx.doi.org/10.1145/1468075.1468121
http://dx.doi.org/10.1145/1468075.1468121
http://dx.doi.org/10.1007/978-3-319-72565-9_16
https://bigquake.inria.fr/
https://bigquake.inria.fr/
http://dx.doi.org/10.1515/jmc-2018-0027
http://dx.doi.org/10.1515/jmc-2018-0027
http://dx.doi.org/10.1007/978-3-030-25922-8_4
http://dx.doi.org/10.1007/978-3-030-25922-8_4

BIBLIOGRAPHY 123

[BBCO19] Magali Bardet, Manon Bertin, Alain Couvreur, and Ayoub Otmani. Practical
algebraic attack on DAGS. In Baldi et al. [BPS19], pages 86–101. doi:10.
1007/978-3-030-25922-8_5.

[BBG+13] Robert Beals, Stephen Brierley, Oliver Gray, Aram W. Harrow, Samuel Kutin,
Noah Linden, Dan Shepherd, and Mark Stather. Efficient distributed quantum
computing. Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, 469(2153), 2013. doi:10.1098/rspa.2012.0686.

[BBPS18] Gustavo Banegas, Paulo S. L. M. Barreto, Edoardo Persichetti, and Paolo San-
tini. Designing efficient dyadic operations for cryptographic applications. Math-
crypt, to appear, 2018. https://eprint.iacr.org/2018/650.

[BC18] Élise Barelli and Alain Couvreur. An efficient structural attack on NIST submis-
sion DAGS. In Thomas Peyrin and Steven D. Galbraith, editors, Advances in Cryp-
tology – ASIACRYPT 2018 – 24th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Brisbane, QLD, Australia, December
2-6, 2018, Proceedings, Part I, volume 11272 of Lecture Notes in Computer Science,
pages 93–118. Springer, 2018. doi:10.1007/978-3-030-03326-2_4.

[BCD+16] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Vale-
ria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off the
ring! practical, quantum-secure key exchange from LWE. In Edgar R. Weippl,
Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi,
editors, Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, Vienna, Austria, October 24-28, 2016, pages 1006–1018.
ACM, 2016. doi:10.1145/2976749.2978425.

[BCDR17] Dominic Bucerzan, Pierre-Louis Cayrel, Vlad Dragoi, and Tania Richmond.
Improved timing attacks against the secret permutation in the McEliece PKC.
International Journal of Computers Communications & Control, 12(1):7–25, 2017.

[BCG06] Marco Baldi, Franco Chiaraluce, and Roberto Garello. On the usage of quasi-
cyclic low-density parity-check codes in the McEliece cryptosystem. In Pro-
ceedings of the First International Conference on Communication and Electronics
(ICEE’06), pages 305–310, October 2006.

[BCGO09] Thierry P. Berger, Pierre-Louis Cayrel, Philippe Gaborit, and Ayoub Otmani.
Reducing key length of the McEliece cryptosystem. In Bart Preneel, editor,
Progress in Cryptology - AFRICACRYPT 2009, Second International Conference on
Cryptology in Africa, Gammarth, Tunisia, June 21-25, 2009. Proceedings, vol-
ume 5580 of Lecture Notes in Computer Science, pages 77–97. Springer, 2009.
doi:10.1007/978-3-642-02384-2_6.

[BCL+] Daniel J. Bernstein, Tung Chou, Tanja Lange, Ingo von Maurich, Rafael Misoczki,
Ruben Niederhagen, Edoardo Persichetti, Christiane Peters, Peter Schwabe, Nico-
las Sendrier, Jakub Szefer, and Wen Wang. Classic McEliece. NIST Post-Quantum
Cryptography Project: First and Second Rounds Candidate Algorithms. URL:
https://classic.mceliece.org/.

http://dx.doi.org/10.1007/978-3-030-25922-8_5
http://dx.doi.org/10.1007/978-3-030-25922-8_5
http://dx.doi.org/10.1098/rspa.2012.0686
https://eprint.iacr.org/2018/650
http://dx.doi.org/10.1007/978-3-030-03326-2_4
http://dx.doi.org/10.1145/2976749.2978425
http://dx.doi.org/10.1007/978-3-642-02384-2_6
https://classic.mceliece.org/

124 BIBLIOGRAPHY

[BCNS15] Joppe W. Bos, Craig Costello, Michael Naehrig, and Douglas Stebila. Post-
quantum key exchange for the TLS protocol from the ring learning with errors
problem. In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose,
CA, USA, May 17-21, 2015, pages 553–570. IEEE Computer Society, 2015. doi:
10.1109/SP.2015.40.

[BCP18] Gustavo Banegas, Ricardo Custódio, and Daniel Panario. A new class of irre-
ducible pentanomials for polynomial-based multipliers in binary fields. Journal
of Cryptographic Engineering, Nov 2018. doi:10.1007/s13389-018-0197-6.

[BCS13] Daniel J. Bernstein, Tung Chou, and Peter Schwabe. McBits: Fast constant-time
code-based cryptography. In Guido Bertoni and Jean-Sébastien Coron, editors,
Cryptographic Hardware and Embedded Systems - CHES 2013 - 15th International
Workshop, Santa Barbara, CA, USA, August 20-23, 2013. Proceedings, volume
8086 of Lecture Notes in Computer Science, pages 250–272. Springer, 2013. doi:
10.1007/978-3-642-40349-1_15.

[BD08] Johannes A. Buchmann and Jintai Ding, editors. Post-Quantum Cryptography,
Second International Workshop, PQCrypto 2008, Cincinnati, OH, USA, October
17-19, 2008, Proceedings, volume 5299 of Lecture Notes in Computer Science.
Springer, 2008. doi:10.1007/978-3-540-88403-3.

[Ben89] Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM J.
Comput., 18(4):766–776, 1989. doi:10.1137/0218053.

[Ber70] Elwyn R. Berlekamp. Factoring polynomials over large finite fields. Mathematics
of computation, 24(111):713–735, 1970.

[Ber05] Daniel J. Bernstein. Cache-timing attacks on AES, 2005. URL: https://cr.
yp.to/antiforgery/cachetiming-20050414.pdf.

[Ber09] Daniel J. Bernstein. Cost analysis of hash collisions: Will quantum computers
make sharcs obsolete? SHARCS’09 Special-purpose Hardware for Attacking Cryp-
tographic Systems, page 105, 2009.

[Ber10] Daniel J. Bernstein. Grover vs. McEliece. In Sendrier [Sen10], pages 73–80.
doi:10.1007/978-3-642-12929-2_6.

[Ber15] Elwyn R. Berlekamp. Algebraic Coding Theory. WORLD SCIENTIFIC, 2015. doi:
10.1142/9407.

[BFP13] Luk Bettale, Jean-Charles Faugère, and Ludovic Perret. Cryptanalysis of HFE,
multi-HFE and variants for odd and even characteristic. Des. Codes Cryptography,
69(1):1–52, 2013. doi:10.1007/s10623-012-9617-2.

[BFS99] Jonathan F. Buss, Gudmund S. Frandsen, and Jeffrey O. Shallit. The computa-
tional complexity of some problems of linear algebra. Journal of Computer and
System Sciences, 58(3):572–596, 1999.

http://dx.doi.org/10.1109/SP.2015.40
http://dx.doi.org/10.1109/SP.2015.40
http://dx.doi.org/10.1007/s13389-018-0197-6
http://dx.doi.org/10.1007/978-3-642-40349-1_15
http://dx.doi.org/10.1007/978-3-642-40349-1_15
http://dx.doi.org/10.1007/978-3-540-88403-3
http://dx.doi.org/10.1137/0218053
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
http://dx.doi.org/10.1007/978-3-642-12929-2_6
http://dx.doi.org/10.1142/9407
http://dx.doi.org/10.1142/9407
http://dx.doi.org/10.1007/s10623-012-9617-2

BIBLIOGRAPHY 125

[BGG+17] Paulo S. L. M. Barreto, Shay Gueron, Tim Güneysu, Rafael Misoczki, Edoardo
Persichetti, Nicolas Sendrier, and Jean-Pierre Tillich. CAKE: code-based algorithm
for key encapsulation. In Máire O’Neill, editor, Cryptography and Coding - 16th
IMA International Conference, IMACC 2017, Oxford, UK, December 12-14, 2017,
Proceedings, volume 10655 of Lecture Notes in Computer Science, pages 207–226.
Springer, 2017. doi:10.1007/978-3-319-71045-7_11.

[BHLY16] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom.
Flush, Gauss, and Reload - A cache attack on the BLISS Lattice-based signa-
ture scheme. In Benedikt Gierlichs and Axel Y. Poschmann, editors, Crypto-
graphic Hardware and Embedded Systems - CHES 2016 - 18th International Con-
ference, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings, volume 9813
of Lecture Notes in Computer Science, pages 323–345. Springer, 2016. doi:
10.1007/978-3-662-53140-2_16.

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum cryptanalysis of hash
and claw-free functions. In Claudio L. Lucchesi and Arnaldo V. Moura, editors,
LATIN ’98: Theoretical Informatics, Third Latin American Symposium, Campinas,
Brazil, April, 20-24, 1998, Proceedings, volume 1380 of Lecture Notes in Computer
Science, pages 163–169. Springer, 1998. doi:10.1007/BFb0054319.

[Bla05] Paul E. Black. Fisher-Yates shuffle. Dictionary of algorithms and data structures,
19, 2005.

[BLM11] Paulo S. L. M. Barreto, Richard Lindner, and Rafael Misoczki. Monoidic codes
in cryptography. In Bo-Yin Yang, editor, Post-Quantum Cryptography - 4th In-
ternational Workshop, PQCrypto 2011, Taipei, Taiwan, November 29 - December
2, 2011. Proceedings, volume 7071 of Lecture Notes in Computer Science, pages
179–199. Springer, 2011. doi:10.1007/978-3-642-25405-5_12.

[BLP10] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. Wild McEliece. In
Alex Biryukov, Guang Gong, and Douglas R. Stinson, editors, Selected Areas
in Cryptography - 17th International Workshop, SAC 2010, Waterloo, Ontario,
Canada, August 12-13, 2010, Revised Selected Papers, volume 6544 of Lecture
Notes in Computer Science, pages 143–158. Springer, 2010. doi:10.1007/
978-3-642-19574-7.

[BMvT78] Elwyn R. Berlekamp, Robert J. McEliece, and Henk C. A. van Tilborg. On the
inherent intractability of certain coding problems (corresp.). Information Theory,
IEEE Transactions on, 24(3):384 – 386, may 1978. doi:10.1109/TIT.1978.
1055873.

[Boy01] Colin Boyd, editor. Advances in Cryptology – ASIACRYPT 2001, 7th International
Conference on the Theory and Application of Cryptology and Information Security,
Gold Coast, Australia, December 9-13, 2001, Proceedings, volume 2248 of Lecture
Notes in Computer Science. Springer, 2001. doi:10.1007/3-540-45682-1.

[BP18] Daniel J. Bernstein and Edoardo Persichetti. Towards KEM unification. Cryp-
tology ePrint Archive, Report 2018/526, 2018. https://eprint.iacr.org/
2018/526.

http://dx.doi.org/10.1007/978-3-319-71045-7_11
http://dx.doi.org/10.1007/978-3-662-53140-2_16
http://dx.doi.org/10.1007/978-3-662-53140-2_16
http://dx.doi.org/10.1007/BFb0054319
http://dx.doi.org/10.1007/978-3-642-25405-5_12
http://dx.doi.org/10.1007/978-3-642-19574-7
http://dx.doi.org/10.1007/978-3-642-19574-7
http://dx.doi.org/10.1109/TIT.1978.1055873
http://dx.doi.org/10.1109/TIT.1978.1055873
http://dx.doi.org/10.1007/3-540-45682-1
https://eprint.iacr.org/2018/526
https://eprint.iacr.org/2018/526

126 BIBLIOGRAPHY

[BPS19] Marco Baldi, Edoardo Persichetti, and Paolo Santini, editors. Code-Based Cryp-
tography – 7th International Workshop, CBC 2019, Darmstadt, Germany, May 18-
19, 2019, Revised Selected Papers, volume 11666 of Lecture Notes in Computer
Science. Springer, 2019. doi:10.1007/978-3-030-25922-8.

[BS08] Bhaskar Biswas and Nicolas Sendrier. McEliece cryptosystem implementation:
Theory and practice. In Buchmann and Ding [BD08], pages 47–62. doi:10.
1007/978-3-540-88403-3_4.

[CBSG17] Andrew W. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta. Open
quantum assembly language. arXiv preprint arXiv:1707.03429, 2017.

[CFS01] Nicolas Courtois, Matthieu Finiasz, and Nicolas Sendrier. How to achieve a
McEliece-based digital signature scheme. In Boyd [Boy01], pages 157–174. doi:
10.1007/3-540-45682-1.

[Cho17] Tung Chou. McBits revisited. In Wieland Fischer and Naofumi Homma, editors,
Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th International
Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings, volume 10529
of Lecture Notes in Computer Science, pages 213–231. Springer, 2017. doi:10.
1007/978-3-319-66787-4_11.

[CHP12] Pierre-Louis Cayrel, Gerhard Hoffmann, and Edoardo Persichetti. Efficient im-
plementation of a CCA2-secure variant of McEliece using generalized Srivastava
codes. In Marc Fischlin, Johannes A. Buchmann, and Mark Manulis, editors,
Public Key Cryptography - PKC 2012 - 15th International Conference on Practice
and Theory in Public Key Cryptography, Darmstadt, Germany, May 21-23, 2012.
Proceedings, volume 7293 of Lecture Notes in Computer Science, pages 138–155.
Springer, 2012. doi:10.1007/978-3-642-30057-8_9.

[CL04] Daniel J. Costello and Shu Lin. Error Control Coding: Fundamentals and Applica-
tions. Pearson, 2nd edition, 2004.

[Cou01] Nicolas Courtois. Efficient zero-knowledge authentication based on a linear
algebra problem MinRank. In Boyd [Boy01], pages 402–421. doi:10.1007/
3-540-45682-1_24.

[CR88] Benny Chor and Ronald L. Rivest. A knapsack-type public key cryptosystem based
on arithmetic in finite fields. IEEE Trans. Information Theory, 34(5):901–909,
1988. doi:10.1109/18.21214.

[DGZ17] Jean-Christophe Deneuville, Philippe Gaborit, and Gilles Zémor. Ouroboros:
A simple, secure and efficient key exchange protocol based on coding theory. In
Lange and Takagi [LT17], pages 18–34. doi:10.1007/978-3-319-59879-6_
2.

[DHF+18] Jean-Luc Danger, Youssef El Housni, Adrien Facon, Cheikh Thiecoumba Gu-
eye, Sylvain Guilley, Sylvie Herbel, Ousmane Ndiaye, Edoardo Persichetti, and
Alexander Schaub. On the performance and security of multiplication in GF(2n).
Cryptography, 2(3):25, 2018. doi:10.3390/cryptography2030025.

http://dx.doi.org/10.1007/978-3-030-25922-8
http://dx.doi.org/10.1007/978-3-540-88403-3_4
http://dx.doi.org/10.1007/978-3-540-88403-3_4
http://dx.doi.org/10.1007/3-540-45682-1
http://dx.doi.org/10.1007/3-540-45682-1
http://dx.doi.org/10.1007/978-3-319-66787-4_11
http://dx.doi.org/10.1007/978-3-319-66787-4_11
http://dx.doi.org/10.1007/978-3-642-30057-8_9
http://dx.doi.org/10.1007/3-540-45682-1_24
http://dx.doi.org/10.1007/3-540-45682-1_24
http://dx.doi.org/10.1109/18.21214
http://dx.doi.org/10.1007/978-3-319-59879-6_2
http://dx.doi.org/10.1007/978-3-319-59879-6_2
http://dx.doi.org/10.3390/cryptography2030025

BIBLIOGRAPHY 127

[Div15] NIST Computer Security Division. SHA-3 standard: Permutation-based hash
and extendable-output functions. FIPS Publication 202, National Institute of
Standards and Technology, U.S. Department of Commerce, Aug 2015. doi:
10.6028/NIST.FIPS.202.

[DPP16] James H. Davenport, Christophe Petit, and Benjamin Pring. A generalised suc-
cessive resultants algorithm. In Sylvain Duquesne and Svetla Petkova-Nikova,
editors, Arithmetic of Finite Fields - 6th International Workshop, WAIFI 2016,
Ghent, Belgium, July 13-15, 2016, Revised Selected Papers, volume 10064 of
Lecture Notes in Computer Science, pages 105–124, 2016. doi:10.1007/
978-3-319-55227-9_9.

[DR13] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the advanced
encryption standard. Springer Science & Business Media, 2013.

[FA76] Bernard J. Fino and V. Ralph Algazi. Unified matrix treatment of the fast Walsh-
Hadamard transform. IEEE Trans. Computers, 25(11):1142–1146, 1976. doi:
10.1109/TC.1976.1674569.

[FGO+13] Jean-Charles Faugère, Valérie Gauthier-Umaña, Ayoub Otmani, Ludovic Per-
ret, and Jean-Pierre Tillich. A distinguisher for high-rate McEliece cryptosystems.
IEEE Trans. Information Theory, 59(10):6830–6844, 2013. doi:10.1109/TIT.
2013.2272036.

[FGP+15] Jean-Charles Faugère, Danilo Gligoroski, Ludovic Perret, Simona Samard-
jiska, and Enrico Thomae. A polynomial-time key-recovery attack on MQQ
cryptosystems. In Jonathan Katz, editor, Public-Key Cryptography - PKC 2015
- 18th IACR International Conference on Practice and Theory in Public-Key Cryp-
tography, Gaithersburg, MD, USA, March 30 - April 1, 2015, Proceedings, vol-
ume 9020 of Lecture Notes in Computer Science, pages 150–174. Springer, 2015.
doi:10.1007/978-3-662-46447-2_7.

[FOP+16] Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, Frédéric de Portzam-
parc, and Jean-Pierre Tillich. Structural cryptanalysis of McEliece schemes with
compact keys. Des. Codes Cryptography, 79(1):87–112, 2016. doi:10.1007/
s10623-015-0036-z.

[FOPT10] Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, and Jean-Pierre Tillich.
Algebraic cryptanalysis of McEliece variants with compact keys. In Henri Gilbert,
editor, Advances in Cryptology – EUROCRYPT 2010, 29th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Monaco
/ French Riviera, May 30 - June 3, 2010. Proceedings, volume 6110 of Lecture
Notes in Computer Science, pages 279–298. Springer, 2010. doi:10.1007/
978-3-642-13190-5_14.

[FT02] Sergei V. Fedorenko and Peter V. Trifonov. Finding roots of polynomials over finite
fields. IEEE Transactions on communications, 50(11):1709–1711, 2002.

[Gab85] Ernest Mukhamedovich Gabidulin. Theory of codes with maximum rank dis-
tance. Problemy Peredachi Informatsii, 21(1):3–16, 1985.

http://dx.doi.org/10.6028/NIST.FIPS.202
http://dx.doi.org/10.6028/NIST.FIPS.202
http://dx.doi.org/10.1007/978-3-319-55227-9_9
http://dx.doi.org/10.1007/978-3-319-55227-9_9
http://dx.doi.org/10.1109/TC.1976.1674569
http://dx.doi.org/10.1109/TC.1976.1674569
http://dx.doi.org/10.1109/TIT.2013.2272036
http://dx.doi.org/10.1109/TIT.2013.2272036
http://dx.doi.org/10.1007/978-3-662-46447-2_7
http://dx.doi.org/10.1007/s10623-015-0036-z
http://dx.doi.org/10.1007/s10623-015-0036-z
http://dx.doi.org/10.1007/978-3-642-13190-5_14
http://dx.doi.org/10.1007/978-3-642-13190-5_14

128 BIBLIOGRAPHY

[Gal63] Robert G. Gallager. Low-Density Parity-Check Codes. PhD thesis, M.I.T., 1963.

[GC00] Louis Goubin and Nicolas Courtois. Cryptanalysis of the TTM cryptosystem. In
Tatsuaki Okamoto, editor, Advances in Cryptology – ASIACRYPT 2000, 6th Inter-
national Conference on the Theory and Application of Cryptology and Information
Security, Kyoto, Japan, December 3-7, 2000, Proceedings, volume 1976 of Lec-
ture Notes in Computer Science, pages 44–57. Springer, 2000. doi:10.1007/
3-540-44448-3_4.

[GJS16] Qian Guo, Thomas Johansson, and Paul Stankovski. A key recovery attack
on MDPC with CCA security using decoding errors. In Jung Hee Cheon and
Tsuyoshi Takagi, editors, Advances in Cryptology – ASIACRYPT 2016 – 22nd In-
ternational Conference on the Theory and Application of Cryptology and Infor-
mation Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I, vol-
ume 10031 of Lecture Notes in Computer Science, pages 789–815, 2016. doi:
10.1007/978-3-662-53887-6_29.

[GKK+17] Lucky Galvez, Jon-Lark Kim, Myeong Jae Kim, Young-Sik Kim, and
Nari Lee. McNie: Compact Mceliece-Niederreiter Cryptosystem, December
2017. NIST Post-Quantum Cryptography Project: First Round Candidate
Algorithms. URL: https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/round-1/submissions/
McNie.zip.

[GLRS16] Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer Stein-
wandt. Applying Grover’s algorithm to AES: quantum resource estimates. In
Tsuyoshi Takagi, editor, Post-Quantum Cryptography – 7th International Work-
shop, PQCrypto 2016, Fukuoka, Japan, February 24-26, 2016, Proceedings, vol-
ume 9606 of Lecture Notes in Computer Science, pages 29–43. Springer, 2016.
doi:10.1007/978-3-319-29360-8_3.

[GMRZ13] Philippe Gaborit, Gaétan Murat, Olivier Ruatta, and Gilles Zemor. Low Rank
Parity Check codes and their application to cryptography. In Lilya Budaghyan,
Tor Helleseth, and Matthew G. Parker, editors, The International Workshop on
Coding and Cryptography (WCC 13), Bergen, Norway, April 2013. ISBN 978-82-
308-2269-2. URL: https://hal.archives-ouvertes.fr/hal-00913719.

[GR03] Lov Grover and Terry Rudolph. How significant are the known collision and
element distinctness quantum algorithms? arXiv preprint quant-ph/0309123,
2003.

[Gra06] Robert M. Gray. Toeplitz and circulant matrices: A review. Foundations and
Trends® in Communications and Information Theory, 2(3):155–239, 2006. doi:
10.1561/0100000006.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In
Gary L. Miller, editor, Proceedings of the Twenty-Eighth Annual ACM Symposium
on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996,
pages 212–219. ACM, 1996. doi:10.1145/237814.237866.

http://dx.doi.org/10.1007/3-540-44448-3_4
http://dx.doi.org/10.1007/3-540-44448-3_4
http://dx.doi.org/10.1007/978-3-662-53887-6_29
http://dx.doi.org/10.1007/978-3-662-53887-6_29
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/McNie.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/McNie.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/McNie.zip
http://dx.doi.org/10.1007/978-3-319-29360-8_3
https://hal.archives-ouvertes.fr/hal-00913719
http://dx.doi.org/10.1561/0100000006
http://dx.doi.org/10.1561/0100000006
http://dx.doi.org/10.1145/237814.237866

BIBLIOGRAPHY 129

[GRSZ14] Philippe Gaborit, Olivier Ruatta, Julien Schrek, and Gilles Zémor. New re-
sults for rank-based cryptography. In David Pointcheval and Damien Vergnaud,
editors, Progress in Cryptology, AFRICACRYPT 2014, 7th International Conference
on Cryptology in Africa, Marrakesh, Morocco, May 28-30, 2014. Proceedings, vol-
ume 8469 of Lecture Notes in Computer Science, pages 1–12. Springer, 2014.
doi:10.1007/978-3-319-06734-6_1.

[Gul73] Mohammed N. Gulamhusein. Simple matrix-theory proof of the discrete dyadic
convolution theorem. Electronics Letters, 9(10):238–239, 1973.

[Hel72] Hermann Helgert. Srivastava codes. IEEE Transactions on Information Theory,
18(2):292–297, March 1972. doi:10.1109/TIT.1972.1054760.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis
of the Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin, ed-
itors, Theory of Cryptography - 15th International Conference, TCC 2017, Bal-
timore, MD, USA, November 12-15, 2017, Proceedings, Part I, volume 10677
of Lecture Notes in Computer Science, pages 341–371. Springer, 2017. doi:
10.1007/978-3-319-70500-2_12.

[HHL09] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for
linear systems of equations. Physical review letters, 103(15):150502, 2009.

[HRS16] Andreas Hülsing, Joost Rijneveld, and Fang Song. Mitigating multi-target at-
tacks in hash-based signatures. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe
Persiano, and Bo-Yin Yang, editors, Public-Key Cryptography – PKC 2016 - 19th
IACR International Conference on Practice and Theory in Public-Key Cryptogra-
phy, Taipei, Taiwan, March 6-9, 2016, Proceedings, Part I, volume 9614 of Lec-
ture Notes in Computer Science, pages 387–416. Springer, 2016. doi:10.1007/
978-3-662-49384-7_15.

[HS13] Yann Hamdaoui and Nicolas Sendrier. A non asymptotic analysis of information
set decoding. Cryptology ePrint Archive, Report 2013/162, 2013. http://
eprint.iacr.org/2013/162.

[KHJ18] Panjin Kim, Daewan Han, and Kyung Chul Jeong. Time–space complexity of
quantum search algorithms in symmetric cryptanalysis: applying to aes and sha-
2. Quantum Information Processing, 17(12):339, Oct 2018. doi:10.1007/
s11128-018-2107-3.

[KKG+18] Jon-Lark Kim, Young-Sik Kim, Lucky Galvez, Myeong Jae Kim, and Nari Lee.
McNie: a code-based public-key cryptosystem. arXiv preprint arXiv:1812.05008,
2018. URL: https://arxiv.org/abs/1812.05008.

[Kni95] Emanuel Knill. An analysis of Bennett’s pebble game. CoRR, abs/math/9508218,
1995. URL: http://arxiv.org/abs/math/9508218.

[KO62] Anatoly Karatsuba and Yuri Ofman. Multiplication of multidigit numbers by au-
tomata. Soviet Physics Doklady, 7:595, 12 1962.

http://dx.doi.org/10.1007/978-3-319-06734-6_1
http://dx.doi.org/10.1109/TIT.1972.1054760
http://dx.doi.org/10.1007/978-3-319-70500-2_12
http://dx.doi.org/10.1007/978-3-319-70500-2_12
http://dx.doi.org/10.1007/978-3-662-49384-7_15
http://dx.doi.org/10.1007/978-3-662-49384-7_15
http://eprint.iacr.org/2013/162
http://eprint.iacr.org/2013/162
http://dx.doi.org/10.1007/s11128-018-2107-3
http://dx.doi.org/10.1007/s11128-018-2107-3
https://arxiv.org/abs/1812.05008
http://arxiv.org/abs/math/9508218

130 BIBLIOGRAPHY

[KS99] Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE public key cryptosys-
tem by relinearization. In Wiener [Wie99], pages 19–30. doi:10.1007/
3-540-48405-1_2.

[KT17] Ghazal Kachigar and Jean-Pierre Tillich. Quantum information set decod-
ing algorithms. In Lange and Takagi [LT17], pages 69–89. doi:10.1007/
978-3-319-59879-6_5.

[LSP98] Hoi-Kwong Lo, Tim Spiller, and Sandu Popescu. Introduction to quantum com-
putation and information. World Scientific, 1998.

[LT17] Tanja Lange and Tsuyoshi Takagi, editors. Post-Quantum Cryptography - 8th Inter-
national Workshop, PQCrypto 2017, Utrecht, The Netherlands, June 26-28, 2017,
Proceedings, volume 10346 of Lecture Notes in Computer Science. Springer, 2017.
doi:10.1007/978-3-319-59879-6.

[LT18] Terry Shue Chien Lau and Chik How Tan. Key recovery attack on McNie based
on low rank parity check codes and its reparation. In Atsuo Inomata and Kan
Yasuda, editors, Advances in Information and Computer Security - 13th Interna-
tional Workshop on Security, IWSEC 2018, Sendai, Japan, September 3-5, 2018,
Proceedings, volume 11049 of Lecture Notes in Computer Science, pages 19–34.
Springer, 2018. doi:10.1007/978-3-319-97916-8_2.

[MAAB+17] Carlos Melchor Aguilar, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Jean-
Christophe Blazy, Olivier Deneuville, Philippe Gaborit, Adrien Hauteville, and
Gilles Zémor. Ouroboros-R, December 2017. NIST Post-Quantum Cryptography
Project: First Round Candidate Algorithms. URL: https://pqc-ouroborosr.
org/.

[MAAB+19] Carlos Melchor Aguilar, Nicolas Aragon, Magali Bardet, Slim Bettaieb,
Loïc Bidoux, Jean-Christophe Blazy, Olivier Deneuville, Philippe Gaborit, Adrien
Hauteville, Ayoub Otmani, Olivier Ruatta, Jean-Pierre Tillich, and Gilles Zé-
mor. Rollo - Rank-Ouroboros, LAKE and LOCKER, January 2019. NIST Post-
Quantum Cryptography Project: Second Round Candidate Algorithms. URL:
https://pqc-rollo.org/index.html.

[MB09] Rafael Misoczki and Paulo S. L. M. Barreto. Compact McEliece keys from Goppa
codes. In Michael J. Jacobson Jr., Vincent Rijmen, and Reihaneh Safavi-Naini,
editors, Selected Areas in Cryptography, 16th Annual International Workshop, SAC
2009, Calgary, Alberta, Canada, August 13-14, 2009, Revised Selected Papers, vol-
ume 5867 of Lecture Notes in Computer Science, pages 376–392. Springer, 2009.
doi:10.1007/978-3-642-05445-7_24.

[MBC19] Douglas Marcelino Beppler Martins, Gustavo Banegas, and Ricardo Fe-
lipe Custódio. Don’t forget your roots: Constant-time root finding over
F2m . In Schwabe and Thériault [ST19], pages 109–129. doi:10.1007/
978-3-030-30530-7_6.

[McE78] Robert J. McEliece. A public-key cryptosystem based on algebraic coding theory.
Deep Space Network Progress Report, 44:114–116, January 1978.

http://dx.doi.org/10.1007/3-540-48405-1_2
http://dx.doi.org/10.1007/3-540-48405-1_2
http://dx.doi.org/10.1007/978-3-319-59879-6_5
http://dx.doi.org/10.1007/978-3-319-59879-6_5
http://dx.doi.org/10.1007/978-3-319-59879-6
http://dx.doi.org/10.1007/978-3-319-97916-8_2
https://pqc-ouroborosr.org/
https://pqc-ouroborosr.org/
https://pqc-rollo.org/index.html
http://dx.doi.org/10.1007/978-3-642-05445-7_24
http://dx.doi.org/10.1007/978-3-030-30530-7_6
http://dx.doi.org/10.1007/978-3-030-30530-7_6

BIBLIOGRAPHY 131

[MS77] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of
error-correcting codes, volume 16. Elsevier, 1977.

[MSSS18] Michele Mosca, Nicolas Sendrier, Rainer Steinwandt, and Krysta Svore. Quan-
tum Cryptanalysis (Dagstuhl Seminar 17401). Dagstuhl Reports, 7(10):1–13,
2018. doi:10.4230/DagRep.7.10.1.

[MTSB13] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo L.S.M. Bar-
reto. MDPC-McEliece: New McEliece variants from moderate density parity-
check codes. In IEEE International Symposium on Information Theory – ISIT’2013,
pages 2069–2073, Istambul, Turkey, 2013. IEEE.

[Nat01] National Institute of Standards and Technology. Advanced Encryption
Standard (AES). pub-NIST, November 2001. Supersedes FIPS PUB
180 1993 May 11. URL: https://www.nist.gov/publications/
advanced-encryption-standard-aes.

[Nie86] Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding theory.
Prob. Control and Inf. Theory, 15(2):159–166, 1986.

[Nie11] Ruben Niebuhr. Statistical decoding of codes over Fq. In Bo-Yin Yang, edi-
tor, Post-Quantum Cryptography: 4th International Workshop, PQCrypto 2011,
Taipei, Taiwan, November 29 – December 2, 2011. Proceedings, pages 217–
227, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. doi:10.1007/
978-3-642-25405-5_14.

[NIKM08] Ryo Nojima, Hideki Imai, Kazukuni Kobara, and Kirill Morozov. Semantic
security for the McEliece cryptosystem without random oracles. Des. Codes Cryp-
tography, 49(1-3):289–305, 2008. doi:10.1007/s10623-008-9175-9.

[NIS16] NIST. Submission requirements and evaluation criteria for the
post-quantum cryptography standardization process, 2016. http:
//csrc.nist.gov/groups/ST/post-quantum-crypto/documents/
call-for-proposals-final-dec-2016.pdf.

[NIS17] NIST. Post-quantum cryptography – round 1 submissions, 2017. URL:
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/
Round-1-Submissions.

[NJS19] Alexander Nilsson, Thomas Johansson, and Paul Stankovski. Error amplifi-
cation in code-based cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2019(1):238–258, 2019. doi:10.13154/tches.v2019.i1.238-258.

[NPC+17] Robert Niebuhr, Edoardo Persichetti, Pierre-Louis Cayrel, Stanislav Bulygin,
and Johannes A. Buchmann. On lower bounds for information set decoding over
Fq and on the effect of partial knowledge. IJICoT, 4(1):47–78, 2017. doi:
10.1504/IJICOT.2017.10002266.

[Orw83] G. Orwell. 1984. HMH Books, 1983.

http://dx.doi.org/10.4230/DagRep.7.10.1
https://www.nist.gov/publications/advanced-encryption-standard-aes
https://www.nist.gov/publications/advanced-encryption-standard-aes
http://dx.doi.org/10.1007/978-3-642-25405-5_14
http://dx.doi.org/10.1007/978-3-642-25405-5_14
http://dx.doi.org/10.1007/s10623-008-9175-9
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
http://csrc.nist.gov/groups/ST/post-quantum-crypto/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
http://dx.doi.org/10.13154/tches.v2019.i1.238-258
http://dx.doi.org/10.1504/IJICOT.2017.10002266
http://dx.doi.org/10.1504/IJICOT.2017.10002266

132 BIBLIOGRAPHY

[Pat75] Nicholas Patterson. The algebraic decoding of Goppa codes. IEEE Transactions
on Information Theory, 21(2):203–207, 1975.

[Per12a] Edoardo Persichetti. Compact McEliece keys based on quasi-dyadic Srivastava
codes. Journal of Mathematical Cryptology, 6(2):149–169, 2012.

[Per12b] Edoardo Persichetti. Improving the efficiency of code-based cryptography. PhD
thesis, The University of Auckland, 2012. URL: http://hdl.handle.net/
2292/19803.

[Per13] Edoardo Persichetti. Secure and anonymous hybrid encryption from coding
theory. In Philippe Gaborit, editor, Post-Quantum Cryptography: 5th Interna-
tional Workshop, PQCrypto 2013, Limoges, France, June 4-7, 2013. Proceedings,
pages 174–187, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. doi:
10.1007/978-3-642-38616-9_12.

[Pet] Christiane Peters. Scripts. URL: https://cbcrypto.org/publications/
scripts/.

[Pet10] Christiane Peters. Information-set decoding for linear codes over Fq. In Sendrier
[Sen10], pages 81–94. doi:10.1007/978-3-642-12929-2.

[Pet11] Christiane Peters. Curves, codes, and cryptography. PhD thesis, Technische Uni-
versiteit Eindhoven, 2011. doi:10.6100/IR711052.

[Pet14] Christophe Petit. Finding roots in GF(pn) with the successive resultant algo-
rithm. IACR Cryptology ePrint Archive, 2014:506, 2014.

[Pra62] E. Prange. The use of information sets in decoding cyclic codes. IRE Transactions,
IT-8:S5–S9, 1962.

[PS17] Lukas Polok and Pavel Smrz. Pivoting strategy for fast LU decomposition of sparse
block matrices. In Proceedings of the 25th High Performance Computing Sympo-
sium, HPC ’17, pages 14:1–14:12, San Diego, CA, USA, 2017. Society for Com-
puter Simulation International. URL: http://dl.acm.org/citation.cfm?
id=3108096.3108110.

[RSA78] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the ACM, 21(2):120–126,
1978.

[Th19] The Sage Developers. Sagemath, the Sage Mathematics Software System (Ver-
sion 8.7), 2019. URL: https://www.sagemath.org.

[Sav97] Carla Savage. A survey of combinatorial Gray codes. SIAM review, 39(4):605–
629, 1997.

[SBCB19] Paolo Santini, Massimo Battaglioni, Franco Chiaraluce, and Marco Baldi. Anal-
ysis of reaction and timing attacks against cryptosystems based on sparse parity-
check codes, 2019. URL: http://https://arxiv.org/pdf/1904.12215.
pdf.

http://hdl.handle.net/2292/19803
http://hdl.handle.net/2292/19803
http://dx.doi.org/10.1007/978-3-642-38616-9_12
http://dx.doi.org/10.1007/978-3-642-38616-9_12
https://cbcrypto.org/publications/scripts/
https://cbcrypto.org/publications/scripts/
http://dx.doi.org/10.1007/978-3-642-12929-2
http://dx.doi.org/10.6100/IR711052
http://dl.acm.org/citation.cfm?id=3108096.3108110
http://dl.acm.org/citation.cfm?id=3108096.3108110
https://www.sagemath.org
http://https://arxiv.org/pdf/1904.12215.pdf
http://https://arxiv.org/pdf/1904.12215.pdf

BIBLIOGRAPHY 133

[Sen10] Nicolas Sendrier, editor. Post-Quantum Cryptography, Third International Work-
shop, PQCrypto 2010, Darmstadt, Germany, May 25-28, 2010. Proceedings, vol-
ume 6061 of Lecture Notes in Computer Science. Springer, 2010. doi:10.1007/
978-3-642-12929-2.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM Journal on Computing, 26(5):1484–
1509, 1997.

[Sin00] Simon Singh. The code book: the secret history of codes and code-breaking. Fourth
Estate, 2000.

[SS86] Claus-Peter Schnorr and Adi Shamir. An optimal sorting algorithm for mesh con-
nected computers. In Juris Hartmanis, editor, Proceedings of the 18th Annual ACM
Symposium on Theory of Computing, May 28-30, 1986, Berkeley, California, USA,
pages 255–263. ACM, 1986. doi:10.1145/12130.12156.

[SSMS09] Abdulhadi Shoufan, Falko Strenzke, H. Gregor Molter, and Marc Stöttinger. A
timing attack against Patterson algorithm in the McEliece PKC. In Dong Hoon
Lee and Seokhie Hong, editors, Information, Security and Cryptology - ICISC
2009, 12th International Conference, Seoul, Korea, December 2-4, 2009, Revised
Selected Papers, volume 5984 of Lecture Notes in Computer Science, pages 161–
175. Springer, 2009. doi:10.1007/978-3-642-14423-3_12.

[SSPB19] Simona Samardjiska, Paolo Santini, Edoardo Persichetti, and Gustavo Bane-
gas. A reaction attack against cryptosystems based on LRPC codes. In Schwabe
and Thériault [ST19], pages 197–216. doi:10.1007/978-3-030-30530-7_
10.

[ST19] Peter Schwabe and Nicolas Thériault, editors. Progress in Cryptology - LATIN-
CRYPT 2019 - 6th International Conference on Cryptology and Information Se-
curity in Latin America, Santiago de Chile, Chile, October 2-4, 2019, Proceed-
ings, volume 11774 of Lecture Notes in Computer Science. Springer, 2019. doi:
10.1007/978-3-030-30530-7.

[STM+08] Falko Strenzke, Erik Tews, H. Gregor Molter, Raphael Overbeck, and Abdul-
hadi Shoufan. Side channels in the McEliece PKC. In Buchmann and Ding [BD08],
pages 216–229. doi:10.1007/978-3-540-88403-3_15.

[Str10] Falko Strenzke. A timing attack against the secret permutation in the
McEliece PKC. In Sendrier [Sen10], pages 95–107. doi:10.1007/
978-3-642-12929-2_8.

[Str12] Falko Strenzke. Fast and secure root finding for code-based cryptosystems. In
Josef Pieprzyk, Ahmad-Reza Sadeghi, and Mark Manulis, editors, Cryptology
and Network Security, 11th International Conference, CANS 2012, Darmstadt,
Germany, December 12-14, 2012. Proceedings, volume 7712, pages 232–246.
Springer, 2012. doi:10.1007/978-3-642-35404-5_18.

[Str13] Falko Strenzke. Efficiency and implementation security of code-based cryptosystems.
PhD thesis, Technische Universität, 2013.

http://dx.doi.org/10.1007/978-3-642-12929-2
http://dx.doi.org/10.1007/978-3-642-12929-2
http://dx.doi.org/10.1145/12130.12156
http://dx.doi.org/10.1007/978-3-642-14423-3_12
http://dx.doi.org/10.1007/978-3-030-30530-7_10
http://dx.doi.org/10.1007/978-3-030-30530-7_10
http://dx.doi.org/10.1007/978-3-030-30530-7
http://dx.doi.org/10.1007/978-3-030-30530-7
http://dx.doi.org/10.1007/978-3-540-88403-3_15
http://dx.doi.org/10.1007/978-3-642-12929-2_8
http://dx.doi.org/10.1007/978-3-642-12929-2_8
http://dx.doi.org/10.1007/978-3-642-35404-5_18

134 BIBLIOGRAPHY

[Str15] Barry Strauss. The Death of Caesar: The Story of History’s Most Famous Assassi-
nation. Simon and Schuster, 2015.

[SW16] Peter Schwabe and Bas Westerbaan. Solving binary MQ with Grover’s algo-
rithm. In Claude Carlet, M. Anwar Hasan, and Vishal Saraswat, editors, Secu-
rity, Privacy, and Applied Cryptography Engineering - 6th International Confer-
ence, SPACE 2016, Hyderabad, India, December 14-18, 2016, Proceedings, vol-
ume 10076 of Lecture Notes in Computer Science, pages 303–322. Springer, 2016.
doi:10.1007/978-3-319-49445-6_17.

[TJR01] Trieu-Kien Truong, Jyh-Horng Jeng, and Irving S. Reed. Fast algorithm for
computing the roots of error locator polynomials up to degree 11 in Reed-
Solomon decoders. IEEE Trans. Communications, 49(5):779–783, 2001. doi:
10.1109/26.923801.

[VDvT02] Eric R. Verheul, Jeroen M. Doumen, and Henk C. A. van Tilborg. Sloppy Alice
attacks! Adaptive chosen ciphertext attacks on the McEliece public-key cryptosys-
tem. In Mario Blaum, Patrick G. Farrell, and Henk C. A. van Tilborg, editors, In-
formation, Coding and Mathematics: Proceedings of Workshop honoring Prof. Bob
McEliece on his 60th birthday, pages 99–119, Boston, MA, 2002. Springer US.
doi:10.1007/978-1-4757-3585-7_7.

[vOW94] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search with
application to hash functions and discrete logarithms. In Dorothy E. Denning,
Raymond Pyle, Ravi Ganesan, and Ravi S. Sandhu, editors, CCS ’94, Proceedings
of the 2nd ACM Conference on Computer and Communications Security, Fairfax,
Virginia, USA, November 2-4, 1994., pages 210–218. ACM, 1994. doi:10.1145/
191177.191231.

[Wie99] Michael J. Wiener, editor. Advances in Cryptology - CRYPTO ’99, 19th Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA, August 15-19,
1999, Proceedings, volume 1666 of Lecture Notes in Computer Science. Springer,
1999. doi:10.1007/3-540-48405-1.

[WSN18] Wen Wang, Jakub Szefer, and Ruben Niederhagen. FPGA-based Nieder-
reiter cryptosystem using binary Goppa codes. In Tanja Lange and Rainer
Steinwandt, editors, Post-Quantum Cryptography - 9th International Conference,
PQCrypto 2018, Fort Lauderdale, FL, USA, April 9-11, 2018, Proceedings, vol-
ume 10786 of Lecture Notes in Computer Science, pages 77–98. Springer, 2018.
doi:10.1007/978-3-319-79063-3_4.

http://dx.doi.org/10.1007/978-3-319-49445-6_17
http://dx.doi.org/10.1109/26.923801
http://dx.doi.org/10.1109/26.923801
http://dx.doi.org/10.1007/978-1-4757-3585-7_7
http://dx.doi.org/10.1145/191177.191231
http://dx.doi.org/10.1145/191177.191231
http://dx.doi.org/10.1007/3-540-48405-1
http://dx.doi.org/10.1007/978-3-319-79063-3_4

BIBLIOGRAPHY 135

	Official
	Acknowledgments
	Contents
	1 Introduction
	I Code-Based Cryptography
	2 Background on Code-Based Cryptography
	2.1 Mathematical Background
	2.2 Coding Theory

	3 Fast Multiplication and Inversion in Dyadic Matrices
	3.1 Standard Multiplication
	3.2 Dyadic Convolution
	3.3 Karatsuba Multiplication
	3.4 Comparisons
	3.5 Efficient Inversion of Dyadic and Quasi-Dyadic Matrices

	4 DAGS: Key Encapsulation from Dyadic Generalized Srivastava Codes
	4.1 Protocol Specification
	4.2 Known Attacks and Parameters
	4.3 Implementation and Performance Analysis
	4.4 Advantages and Limitations
	4.5 SimpleDAGS
	4.6 Improved Resistance
	4.7 Revised Implementation Results

	5 Root Finding over F2m
	5.1 BIGQUAKE Key Encapsulation Mechanism & Attack
	5.2 Root Finding Methods
	5.3 Comparison

	6 A Reaction Attack on LRPC Codes
	6.1 A Reaction Attack
	6.2 Equivalent Keys in LRPC Cryptosystems
	6.3 Equivalent Key Attack on Quasi-Cyclic H
	6.4 Case Study: McNie

	II Quantum Cryptanalysis
	7 Background on Quantum Cryptanalysis
	7.1 Quantum Computation
	7.2 Quantum Circuits
	7.3 Grover's Algorithm

	8 AES in a Quantum Computer
	8.1 The AES Block Cipher
	8.2 Background on the Quantum Languages
	8.3 Improved AES Implementation

	9 Grover's Algorithm and Preimage Search
	9.1 Introduction
	9.2 Reversible Computation
	9.3 Reversible Iteration
	9.4 Reversible Distinguished Points
	9.5 Sorting on a Mesh Network
	9.6 Multi-target Preimages

	Summary
	Summary
	Curriculum Vitae
	Curriculum Vitae

	Bibliography
	Bibliography

