Low-communication parallel quantum multi-target preimage search

Gustavo Banegas ${ }^{1}$ and Daniel J. Bernstein ${ }^{1,2}$ $\mathrm{TU} / \mathrm{e}=$

August 18, 2017

[^0]Introduction

Reversibility

Finding t-images

Example

Conclusion

三

Introduction

Threat to AES:

- van Oorschot-Wiener "parallel rho method"

Introduction

Threat to AES:

- van Oorschot-Wiener "parallel rho method"
- It uses a mesh of p small processors.

Introduction

Threat to AES:

- van Oorschot-Wiener "parallel rho method"
- It uses a mesh of p small processors.
- Each running $2^{128} / p t$ fast steps, to find one of t independent AES keys k_{1}, \ldots, k_{t}, using a fixed plain text, e.g, AES(0).

Introduction

Threat to AES:

- van Oorschot-Wiener "parallel rho method"
- It uses a mesh of p small processors.
- Each running $2^{128} / p t$ fast steps, to find one of t independent AES keys k_{1}, \ldots, k_{t}, using a fixed plain text, e.g, AES(0).
- However, it is pre-quantum.

Introduction

Threat to AES:

- van Oorschot-Wiener "parallel rho method"
- It uses a mesh of p small processors.
- Each running $2^{128} / p t$ fast steps, to find one of t independent AES keys k_{1}, \ldots, k_{t}, using a fixed plain text, e.g, AES(0).
- However, it is pre-quantum.

NIST has claimed that AES-128 is secure enough.

Overview

Oracle
 calls

$$
\begin{array}{cc}
p \text { small } & p \text { small } \\
\text { processors, } & \text { processors, } \\
\text { free } & \text { realistic }
\end{array}
$$ communication communication

Overview

Oracle
 calls

$$
\begin{array}{cc}
p \text { small } & p \text { small } \\
\text { processors, } & \text { processors, } \\
\text { free } & \text { realistic }
\end{array}
$$ communication communication

Distinguish point

Let $H:\{0,1\}^{b}$ to $\{0,1\}^{b}$
Take x an input of $H, x^{\prime}=H(x)$.
After take x^{\prime} and apply H again, $x^{\prime \prime}=H\left(x^{\prime}\right)$.
It is possible to do it n times, H^{n} until we satisfy a condition. In our case, we want the first $0<d<b / 2$ bits as 0 .

Distinguish point

Let $H:\{0,1\}^{b}$ to $\{0,1\}^{b}$
Take x an input of $H, x^{\prime}=H(x)$.
After take x^{\prime} and apply H again, $x^{\prime \prime}=H\left(x^{\prime}\right)$.
It is possible to do it n times, H^{n} until we satisfy a condition. In our case, we want the first $0<d<b / 2$ bits as 0 . $H_{d}^{n}(x)$ means d bits of x, computed n times.

Distinguish point

Let $H:\{0,1\}^{b}$ to $\{0,1\}^{b}$
Take x an input of $H, x^{\prime}=H(x)$.
After take x^{\prime} and apply H again, $x^{\prime \prime}=H\left(x^{\prime}\right)$.
It is possible to do it n times, H^{n} until we satisfy a condition. In our case, we want the first $0<d<b / 2$ bits as 0 . $H_{d}^{n}(x)$ means d bits of x, computed n times.

Reversibility

Reversibility of distinguish point

- Bennett-Tompa technique to build a reversible circuit for H^{n};
- It is possible to achieve $a+O\left(b \log _{2} n\right)$ ancillas and gate depth $O\left(g n^{1+\epsilon}\right)$.

Reversibility of sorting on a mesh network

- Using the sorting strategy from "Efficient distributed quantum computing" ${ }^{3}$;
- It is possible to perform the sorting of t elements using $O\left(t\left(b+(\log t)^{2}\right)\right)$ ancillas and $O\left(t^{1 / 2}(\log t)^{2}\right)$ steps.

[^1]
Finding t-images

Fix images y_{1}, \ldots, y_{t}. We build a reversible circuit that performs the following operations:

- Input a vector $\left(x_{1}, \ldots, x_{t}\right)$.

Finding t-images

Fix images y_{1}, \ldots, y_{t}. We build a reversible circuit that performs the following operations:

- Input a vector $\left(x_{1}, \ldots, x_{t}\right)$.
- Compute, in parallel, the chain ends for x_{1}, \ldots, x_{t} : i.e., $H_{d}^{n}\left(x_{1}\right), \ldots, H_{d}^{n}\left(x_{t}\right)$.

Finding t-images

Fix images y_{1}, \ldots, y_{t}. We build a reversible circuit that performs the following operations:

- Input a vector $\left(x_{1}, \ldots, x_{t}\right)$.
- Compute, in parallel, the chain ends for x_{1}, \ldots, x_{t} : i.e., $H_{d}^{n}\left(x_{1}\right), \ldots, H_{d}^{n}\left(x_{t}\right)$.
- Precompute the chain ends for y_{1}, \ldots, y_{t}.

Finding t-images

Fix images y_{1}, \ldots, y_{t}. We build a reversible circuit that performs the following operations:

- Input a vector $\left(x_{1}, \ldots, x_{t}\right)$.
- Compute, in parallel, the chain ends for x_{1}, \ldots, x_{t} : i.e., $H_{d}^{n}\left(x_{1}\right), \ldots, H_{d}^{n}\left(x_{t}\right)$.
- Precompute the chain ends for y_{1}, \ldots, y_{t}.
- Sort the chain ends for x_{1}, \ldots, x_{t} and the chain ends for y_{1}, \ldots, y_{t}.

Finding t-images

Fix images y_{1}, \ldots, y_{t}. We build a reversible circuit that performs the following operations:

- Input a vector $\left(x_{1}, \ldots, x_{t}\right)$.
- Compute, in parallel, the chain ends for x_{1}, \ldots, x_{t} : i.e., $H_{d}^{n}\left(x_{1}\right), \ldots, H_{d}^{n}\left(x_{t}\right)$.
- Precompute the chain ends for y_{1}, \ldots, y_{t}.
- Sort the chain ends for x_{1}, \ldots, x_{t} and the chain ends for y_{1}, \ldots, y_{t}.
- If there is a collision, say a collision between the chain end for x_{i} and the chain end for y_{j} : recompute the chain for x_{i}, checking each chain element to see whether it is a preimage for y_{j}.

Finding t-images

Fix images y_{1}, \ldots, y_{t}. We build a reversible circuit that performs the following operations:

- Input a vector $\left(x_{1}, \ldots, x_{t}\right)$.
- Compute, in parallel, the chain ends for x_{1}, \ldots, x_{t} : i.e., $H_{d}^{n}\left(x_{1}\right), \ldots, H_{d}^{n}\left(x_{t}\right)$.
- Precompute the chain ends for y_{1}, \ldots, y_{t}.
- Sort the chain ends for x_{1}, \ldots, x_{t} and the chain ends for y_{1}, \ldots, y_{t}.
- If there is a collision, say a collision between the chain end for x_{i} and the chain end for y_{j} : recompute the chain for x_{i}, checking each chain element to see whether it is a preimage for y_{j}.
- Output 0 if a preimage was found, otherwise 1.

Example

- Imagine a function $H:\{0,1\}^{40} \rightarrow\{0,1\}^{40}$;

Example

- Imagine a function $H:\{0,1\}^{40} \rightarrow\{0,1\}^{40}$;
- Let's say $t=2^{8}$ and $p=2^{8}$, for this example.

Example

- Imagine a function $H:\{0,1\}^{40} \rightarrow\{0,1\}^{40}$;
- Let's say $t=2^{8}$ and $p=2^{8}$, for this example.
- The probability to find one preimage is roughly $t^{5 / 2} / N=\left(2^{8}\right)^{5 / 2} /\left(2^{40}\right) \approx 2^{-20}$;
- Each processor is going to use $\sqrt{N / p t^{3 / 2}}$ iterations; $\sqrt{2^{40} / 2^{8}\left(\left(2^{8}\right)^{3 / 2}\right)}=\sqrt{2^{40} / 2^{20}}=2^{10}$ iterations.
- Overall we get $\left(2^{8}\right)^{1 / 4}$ speedup from attacking 2^{8} targets.

Example

- Imagine AES-128;

Example

- Imagine AES-128;
- Let's say $t=2^{40}$ and $p=2^{40}$, for this example.

Example

- Imagine AES-128;
- Let's say $t=2^{40}$ and $p=2^{40}$, for this example.
- The probability to find is roughly $t^{5 / 2} / N$; For our example: $\left(2^{40}\right)^{5 / 2} / 2^{128} \approx 2^{-28}$.

Example

- Imagine AES-128;
- Let's say $t=2^{40}$ and $p=2^{40}$, for this example.
- The probability to find is roughly $t^{5 / 2} / N$; For our example: $\left(2^{40}\right)^{5 / 2} / 2^{128} \approx 2^{-28}$.
- Each processor is going to use $\sqrt{N / p t^{3 / 2}}$ iterations;
- $\sqrt{2^{128} / 2^{40}\left(2^{40}\right)^{3 / 2}} \approx \sqrt{2^{128} / 2^{100}}$

Example

- Imagine AES-128;
- Let's say $t=2^{40}$ and $p=2^{40}$, for this example.
- The probability to find is roughly $t^{5 / 2} / N$; For our example: $\left(2^{40}\right)^{5 / 2} / 2^{128} \approx 2^{-28}$.
- Each processor is going to use $\sqrt{N / p t^{3 / 2}}$ iterations;
- $\sqrt{2^{128} / 2^{40}\left(2^{40}\right)^{3 / 2}} \approx \sqrt{2^{128} / 2^{100}}$
- $=\sqrt{2^{28}}=2^{14}$ iterations.

Conclusion \& What's next?

Conclusion:

- Circuit uses $O\left(a+t b+t(\log t)^{2}\right)$ ancillas;
- Depth of $O\left(\sqrt{N / p t^{1 / 2}}\left(g t^{\epsilon / 2}+(\log t)^{2} \log b\right)\right)$;
- Approximately $\sqrt{N / p t^{3 / 2}}$ iterations.
- Created the circuit using quantum simulator for AES 4 (libquantum instead of LiQUi \rangle);

[^2]
Conclusion \& What's next?

Conclusion:

- Circuit uses $O\left(a+t b+t(\log t)^{2}\right)$ ancillas;
- Depth of $O\left(\sqrt{N / p t^{1 / 2}}\left(g t^{\epsilon / 2}+(\log t)^{2} \log b\right)\right)$;
- Approximately $\sqrt{N / p t^{3 / 2}}$ iterations.
- Created the circuit using quantum simulator for AES 4 (libquantum instead of LiQUi \rangle);
What's next?
- Check for the real number of qubits/gates;
- Is it possible to improve?

[^3]
Questions

Thank you for your attention. Questions? gustavo@cryptme.in

[^0]: ${ }^{1}$ Department of Mathematics and Computer Science Technische Universiteit Eindhoven
 gustavo@cryptme.in
 ${ }^{2}$ Department of Computer Science
 University of Illinois at Chicago
 djb@cr.yp.to

[^1]: ${ }^{3}$ Efficient distributed quantum computing
 Beals, Robert and Brierley, Stephen and Gray, Oliver and Harrow, Aram W. and Kutin, Samuel and Linden, Noah and Shepherd, Dan and Stather, Mark \equiv

[^2]: ${ }^{4}$ Applying Grover's algorithm to AES: quantum resource estimates Grassl, Markus and Langenberg, Brandon and Roetteler, Martin and Steinwandt, Rainer

[^3]: ${ }^{4}$ Applying Grover's algorithm to AES: quantum resource estimates Grassl, Markus and Langenberg, Brandon and Roetteler, Martin and Steinwandt, Rainer

