Low-communication parallel quantum multi-target preimage search

August 18, 2017

¹Department of Mathematics and Computer Science Technische Universiteit Eindhoven gustavo@cryptme.in

²Department of Computer Science University of Illinois at Chicago djb@cr.yp.to

Reversibility

Finding t-images

Example

Conclusion

Threat to AES:

van Oorschot-Wiener "parallel rho method"

Threat to AES:

- van Oorschot-Wiener "parallel rho method"
 - ▶ It uses a mesh of *p* small processors.

Threat to AES:

- van Oorschot-Wiener "parallel rho method"
 - ▶ It uses a mesh of *p* small processors.
 - ▶ Each running $2^{128}/pt$ fast steps, to find one of t independent AES keys k_1, \ldots, k_t , using a fixed plain text, e.g, AES(0).

Threat to AES:

- van Oorschot-Wiener "parallel rho method"
 - ▶ It uses a mesh of *p* small processors.
 - ▶ Each running $2^{128}/pt$ fast steps, to find one of t independent AES keys k_1, \ldots, k_t , using a fixed plain text, e.g, AES(0).
- However, it is pre-quantum.

Threat to AES:

- van Oorschot-Wiener "parallel rho method"
 - ▶ It uses a mesh of *p* small processors.
 - ▶ Each running $2^{128}/pt$ fast steps, to find one of t independent AES keys k_1, \ldots, k_t , using a fixed plain text, e.g, AES(0).
- ► However, it is pre-quantum.

NIST has claimed that AES-128 is secure enough.

Distinguish point

```
Let H: \{0,1\}^b to \{0,1\}^b
Take x an input of H, x' = H(x).
After take x' and apply H again, x'' = H(x').
It is possible to do it n times, H^n until we satisfy a condition. In our case, we want the first 0 < d < b/2 bits as 0.
```

Distinguish point

```
Let H: \{0,1\}^b to \{0,1\}^b
Take x an input of H, x' = H(x).
After take x' and apply H again, x'' = H(x').
It is possible to do it n times, H^n until we satisfy a condition. In our case, we want the first 0 < d < b/2 bits as 0.
H^n_d(x) means d bits of x, computed n times.
```

Distinguish point

Let $H: \{0,1\}^b$ to $\{0,1\}^b$ Take x an input of H, x' = H(x). After take x' and apply H again, x'' = H(x'). It is possible to do it n times, H^n until we satisfy a condition. In our case, we want the first 0 < d < b/2 bits as 0. $H^n_d(x)$ means d bits of x, computed n times.

 $H_d^n(y_i) \stackrel{?}{=} H_d^n(x_j)$

Reversibility

Reversibility of distinguish point

- ▶ Bennett-Tompa technique to build a reversible circuit for *H*ⁿ;
- ▶ It is possible to achieve $a + O(b \log_2 n)$ ancillas and gate depth $O(gn^{1+\epsilon})$.

Reversibility of sorting on a mesh network

- Using the sorting strategy from "Efficient distributed quantum computing"³;
- It is possible to perform the sorting of t elements using $O(t(b+(\log t)^2))$ ancillas and $O(t^{1/2}(\log t)^2)$ steps.

 $^{^3}$ Efficient distributed quantum computing Beals, Robert and Brierley, Stephen and Gray, Oliver and Harrow, Aram W. and Kutin, Samuel and Linden, Noah and Shepherd, Dan and Stather, Mark ${\ensuremath{\,{}^{>}}}$

Fix images y_1, \ldots, y_t . We build a reversible circuit that performs the following operations:

▶ Input a vector (x_1, \ldots, x_t) .

- ▶ Input a vector (x_1, \ldots, x_t) .
- ► Compute, in parallel, the chain ends for $x_1, ..., x_t$: i.e., $H_d^n(x_1), ..., H_d^n(x_t)$.

- ▶ Input a vector (x_1, \ldots, x_t) .
- ► Compute, in parallel, the chain ends for $x_1, ..., x_t$: i.e., $H_d^n(x_1), ..., H_d^n(x_t)$.
- ▶ Precompute the chain ends for $y_1, ..., y_t$.

- ▶ Input a vector (x_1, \ldots, x_t) .
- ▶ Compute, in parallel, the chain ends for $x_1, ..., x_t$: i.e., $H_d^n(x_1), ..., H_d^n(x_t)$.
- ▶ Precompute the chain ends for $y_1, ..., y_t$.
- Sort the chain ends for x_1, \ldots, x_t and the chain ends for y_1, \ldots, y_t .

- ▶ Input a vector (x_1, \ldots, x_t) .
- ▶ Compute, in parallel, the chain ends for $x_1, ..., x_t$: i.e., $H_d^n(x_1), ..., H_d^n(x_t)$.
- ▶ Precompute the chain ends for $y_1, ..., y_t$.
- Sort the chain ends for x_1, \ldots, x_t and the chain ends for y_1, \ldots, y_t .
- ▶ If there is a collision, say a collision between the chain end for x_i and the chain end for y_j: recompute the chain for x_i, checking each chain element to see whether it is a preimage for y_j.

- ▶ Input a vector (x_1, \ldots, x_t) .
- ▶ Compute, in parallel, the chain ends for $x_1, ..., x_t$: i.e., $H_d^n(x_1), ..., H_d^n(x_t)$.
- ▶ Precompute the chain ends for $y_1, ..., y_t$.
- Sort the chain ends for x_1, \ldots, x_t and the chain ends for y_1, \ldots, y_t .
- ▶ If there is a collision, say a collision between the chain end for x_i and the chain end for y_j : recompute the chain for x_i , checking each chain element to see whether it is a preimage for y_j .
- Output 0 if a preimage was found, otherwise 1.

▶ Imagine a function $H: \{0,1\}^{40} \rightarrow \{0,1\}^{40}$;

- ▶ Imagine a function $H: \{0,1\}^{40} \rightarrow \{0,1\}^{40}$;
- ▶ Let's say $t = 2^8$ and $p = 2^8$, for this example.

- ▶ Imagine a function $H: \{0,1\}^{40} \to \{0,1\}^{40}$;
- ▶ Let's say $t = 2^8$ and $p = 2^8$, for this example.
- The probability to find one preimage is roughly $t^{5/2}/N = (2^8)^{5/2}/(2^{40}) \approx 2^{-20}$;
- ► Each processor is going to use $\sqrt{N/pt^{3/2}}$ iterations; $\sqrt{2^{40}/2^8((2^8)^{3/2})} = \sqrt{2^{40}/2^{20}} = 2^{10}$ iterations.
- ▶ Overall we get $(2^8)^{1/4}$ speedup from attacking 2^8 targets.

► Imagine AES—128;

- ► Imagine AES—128;
- ▶ Let's say $t = 2^{40}$ and $p = 2^{40}$, for this example.

- ▶ Imagine AES-128;
- Let's say $t = 2^{40}$ and $p = 2^{40}$, for this example.
- The probability to find is roughly $t^{5/2}/N$; For our example: $(2^{40})^{5/2}/2^{128} \approx 2^{-28}$.

- ▶ Imagine AES-128;
- Let's say $t = 2^{40}$ and $p = 2^{40}$, for this example.
- The probability to find is roughly $t^{5/2}/N$; For our example: $(2^{40})^{5/2}/2^{128} \approx 2^{-28}$.
- ► Each processor is going to use $\sqrt{N/pt^{3/2}}$ iterations;
- $\sqrt{2^{128}/2^{40}(2^{40})^{3/2}} \approx \sqrt{2^{128}/2^{100}}$

- ▶ Imagine AES-128;
- Let's say $t = 2^{40}$ and $p = 2^{40}$, for this example.
- The probability to find is roughly $t^{5/2}/N$; For our example: $(2^{40})^{5/2}/2^{128} \approx 2^{-28}$.
- ► Each processor is going to use $\sqrt{N/pt^{3/2}}$ iterations;
- $\sqrt{2^{128}/2^{40}(2^{40})^{3/2}} \approx \sqrt{2^{128}/2^{100}}$
- $ightharpoonup = \sqrt{2^{28}} = 2^{14}$ iterations.

Conclusion & What's next?

Conclusion:

- Circuit uses $O(a + tb + t(\log t)^2)$ ancillas;
- ▶ Depth of $O(\sqrt{N/pt^{1/2}}(gt^{\epsilon/2} + (\log t)^2 \log b));$
- Approximately $\sqrt{N/pt^{3/2}}$ iterations.
- ► Created the circuit using quantum simulator for AES⁴ (libquantum instead of LiQUi |>);

⁴Applying Grover's algorithm to AES: quantum resource estimates Grassl, Markus and Langenberg, Brandon and Roetteler, Martin and Steinwandt, Rainer

Conclusion & What's next?

Conclusion:

- Circuit uses $O(a + tb + t(\log t)^2)$ ancillas;
- ▶ Depth of $O(\sqrt{N/pt^{1/2}}(gt^{\epsilon/2} + (\log t)^2 \log b));$
- Approximately $\sqrt{N/pt^{3/2}}$ iterations.
- ► Created the circuit using quantum simulator for AES⁴ (libquantum instead of LiQUi |>);

What's next?

- Check for the real number of qubits/gates;
- Is it possible to improve?

⁴Applying Grover's algorithm to AES: quantum resource estimates Grassl, Markus and Langenberg, Brandon and Roetteler, Martin and Steinwandt, Rainer

Questions

Thank you for your attention.

Questions?
gustavo@cryptme.in